Answer:
a
The number of radians turned by the wheel in 2s is 
b
The angular acceleration is 
Explanation:
The angular velocity is given as

Now generally the integral of angular velocity gives angular displacement
So integrating the equation of angular velocity through the limit 0 to 2 will gives us the angular displacement for 2 sec
This is mathematically evaluated as

![= [\frac{2t^2}{2} + \frac{t^4}{4}] \left\{ 2} \atop {0}} \right.](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B2t%5E2%7D%7B2%7D%20%2B%20%5Cfrac%7Bt%5E4%7D%7B4%7D%5D%20%5Cleft%5C%7B%202%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![= [\frac{2(2^2)}{2} + \frac{2^4}{4}] - 0](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B2%282%5E2%29%7D%7B2%7D%20%2B%20%5Cfrac%7B2%5E4%7D%7B4%7D%5D%20-%200)


Now generally the derivative of angular velocity gives angular acceleration
So the value of the derivative of angular velocity equation at t= 2 gives us the angular acceleration
This is mathematically evaluated as

so at t=2


C. Forces are always in pairs
Answer:
a=2.304×10¹⁶m/s²
Explanation:
Given data
Distance d=2.5 nm=2,5×10⁻⁹m
Mass of proton m=1.6×10⁻²⁷kg
charge of proton q=1.6×10⁻¹⁹C
To find
acceleration a
Solution
Apply the Coulombs Law

Where k is coulombs constant (k=9×10⁹Nm²/C²)
q=q₁=q₂
r=d
So
Answer:
(you can use my exact words) The length and thickness would make it so that the electrons move differently than they would a shorter and thinner wire because with the wire being longer the electrons would have a longer trip and with the wire being thicker the electrons would be more spread out and move be able to move more freely
Answer: = 5.75 × 10 -6
Explanation:
= 5.75 × 10-6
(scientific notation)
= 5.75e-6
(scientific e notation)
= 5.75 × 10-6
(engineering notation)
(millionth; prefix micro- (u))
= 0.00000575
(real number)