Answer:
Opposite sides are congruent (AB = DC).
Opposite angels are congruent (D = B).
Consecutive angles are supplementary (A + D = 180°).
If one angle is right, then all angles are right.
The diagonals of a parallelogram bisect each other.
Each diagonal of a parallelogram separates it into two congruent triangles.
Explanation: #if you need any queshtions answered within secs/mins hit me up and I gotchu.
<span>Well, since it's in the shape of a wheel and the person walks around the edge of it, they must have a centripetal acceleration. Since a=v^2/r you can solve for "v" using 2.20 as your "a" and 59.5 as your "r" (r=half of the diameter).
</span> a=v^2/r
v=(a*r)^(1/2)=((2.20)*(59.5))^(1/2)=<span>
<span>11.44 m/s.
</span></span><span> After you get "v," plugged that into T=2 pi r/ v. This will give you the 1rev per sec.
</span> T=2 pi r/ v= T=(2)*(pi)*(59.5)/(11.44)= <span>
<span>32.68 rev/s
</span></span> Use dimensional analysis to get rev per min (1rev / # sec) times (60 sec/min).
(32.68 rev/s)(60 s/min)=<span>
<span>1960.74 rev/min
</span></span>
Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Answer:
b) 472HZ, 408HZ
Explanation:
To find the frequencies perceived when the bus approaches and the train departs, you use the Doppler's effect formula for both cases:

fo: frequency of the source = 440Hz
vs: speed of sound = 343m/s
vo: speed of the observer = 0m/s (at rest)
v: sped of the train
f: frequency perceived when the train leaves us.
f': frequency when the train is getTing closer.
Thus, by doing f and f' the subjects of the formulas and replacing the values of v, vo, vs and fo you obtain:

hence, the frequencies for before and after tha train has past are
b) 472HZ, 408HZ
It MUST be either glue or gravity.