we can always find the x-intercept by simply settting y = 0, and solving for "x".
and we can always find the y-intercept by simply setting x = 0 and solving for "y".
![\bf x-4y=-16\implies \stackrel{x=0}{0-4y=-16}\implies y=\cfrac{-16}{-4}\implies y=4 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (0,4)~\hfill](https://tex.z-dn.net/?f=%20%5Cbf%20x-4y%3D-16%5Cimplies%20%5Cstackrel%7Bx%3D0%7D%7B0-4y%3D-16%7D%5Cimplies%20y%3D%5Ccfrac%7B-16%7D%7B-4%7D%5Cimplies%20y%3D4%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A~%5Chfill%20%280%2C4%29~%5Chfill%20)
Answer:
Slope is -3
y-intercept is -3 and equation is y=-3x-3
Option C:
is the product of the rational expression.
Explanation:
The given rational expression is 
We need to determine the product of the rational expression.
<u>Product of the rational expression:</u>
Let us multiply the rational expression to determine the product of the rational expression.
Thus, we have;

Let us use the identity
in the above expression.
Thus, we get;

Simplifying the terms, we get;

Thus, the product of the rational expression is 
Hence, Option C is the correct answer.