Answer:
21) falls
22) vertical
23) rises
24) rises
25) falls
26) horizontal
27) rises
28) horizontal
29) falls
Step-by-step explanation:
We shall use the slope formula
to calculate the slopes of the line passing through each pair of point.
21: (3,1), (2,6)
The slope is ![m=\frac{6-1}{2-3}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B6-1%7D%7B2-3%7D)
.
A negative slope means this line falls
22) (-2,5), (-2,4)
The slope is
= undefined
An undefined slope means this line is vertical
23) The given point is (0,8) (2,10)
The slope is ![m=\frac{10-8}{2-0}=\frac{2}{2}=+1](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B10-8%7D%7B2-0%7D%3D%5Cfrac%7B2%7D%7B2%7D%3D%2B1)
A positive slope means this line rises
24) The points are (-3,-3), (3,1)
The slope is ![m=\frac{1--3}{3--3}=\frac{4}{6}=+\frac{2}{3}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B1--3%7D%7B3--3%7D%3D%5Cfrac%7B4%7D%7B6%7D%3D%2B%5Cfrac%7B2%7D%7B3%7D)
A positive slope means this line rises
25) The points are: (5,0) (6,-2)
Slope: ![m=\frac{-2-0}{6-5}=\frac{-2}{1}=-2](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B-2-0%7D%7B6-5%7D%3D%5Cfrac%7B-2%7D%7B1%7D%3D-2)
A negative slope means this line falls
26) The points are (-2,-8) , (5,-8).
Slope: ![m=\frac{-8--8}{5--2}=\frac{0}{7}=0](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B-8--8%7D%7B5--2%7D%3D%5Cfrac%7B0%7D%7B7%7D%3D0)
A zero slope means this line is horizontal
27) The points are: (-1,2) , (5,3)
Slope: ![m=\frac{3-2}{5--1}=+\frac{1}{6}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B3-2%7D%7B5--1%7D%3D%2B%5Cfrac%7B1%7D%7B6%7D)
A positive slope means this line rises
28) The points are:
, (-1,4)
Slope: ![m=\frac{4-4}{-1-\frac{1}{2}}=\frac{0}{\frac{1}{2}}=0](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B4-4%7D%7B-1-%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cfrac%7B0%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D0)
A zero slope means the line is horizontal
29) The points are: ![(4,\frac{1}{2}), (5,\frac{1}{4})](https://tex.z-dn.net/?f=%284%2C%5Cfrac%7B1%7D%7B2%7D%29%2C%20%285%2C%5Cfrac%7B1%7D%7B4%7D%29)
Slope: ![m=\frac{\frac{1}{4}-\frac{1}{2}}{5-4}=-\frac{1}{4}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B4%7D-%5Cfrac%7B1%7D%7B2%7D%7D%7B5-4%7D%3D-%5Cfrac%7B1%7D%7B4%7D)
A negative slope means this line falls.