Answer:
χH₂ = 0.4946
χN₂ = 0.4130
χAr = 0.0923
Explanation:
The total pressure of the mixture (P) is:
P = pH₂ + pN₂ + pAr
P = 443.0 Torr + 369.9 Torr + 82.7 Torr
P = 895.6 Torr
We can find the mole fraction of each gas (χ) using the following expression.
χi = pi / P
χH₂ = pH₂ / P = 443.0 Torr/895.6 Torr = 0.4946
χN₂ = pN₂ / P = 369.9 Torr/895.6 Torr = 0.4130
χAr = pAr / P = 82.7 Torr/895.6 Torr = 0.0923
Answer:
see explanation
Explanation:
Write the balanced COMPLETE ionic equation for the reaction when Na₂CO₃ and AgNO₃ are mixed in aqueous solution. If no reaction occurs, simply write only NR.
Ag (+1) + NO3(-1) + 2 Na(+1) + Co3 (-2)--> Ag2CO3 (s) + 2 Na (+1) + 2NO3(-1)
The average atomic mass of an element can be determined by multiplying the individual masses of the isotopes with their respective relative abundances, and adding them.
Average atomic mass of Br = 158 amu(0.2569) + 160 amu(0.4999) + 162 amu(0.2431)
Average atomic mass = 159.96 amu
As described in the problem, the relative abundance for Br-79 is 25.69%. This is because 2 atoms of Br is equal to 79*2 = 158 amu. Similarly, the relative abundance of Br-81 is 81*2 = 162, which is 24.31%.
Since abiotic is a non living factor B would be the answer because water is abiotic
Answer:

Explanation:
Hello there!
In this case, according to the Dalton's law, which explains that the total pressure of a gaseous system equals the sum of the partial pressures of the gases composing, for the gaseous mixture composed by oxygen, nitrogen and carbon dioxide it would be possible to write:

Now, given the pressure of the system and those of oxygen and nitrogen, we calculate that of carbon dioxide as shown below:

Best regards!