Answer:
Its right you dont have to change anything
Step 1-Light Dependent
CO2 and H2O enter the leaf
Step 2- Light Dependent
Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2
Step 3- Light Dependent
The electrons move down to enzymes
Step 4-Light Dependent
Sunlight hits the second pigment molecule allowing the enzymes to convert ADP to ATP and NADP+ gets converted to NADPH
Step 5-Light independent
The ATP and NADPH is used by the calvin cycle as a power source for converting carbon dioxide from the atmosphere into simple sugar glucose.
Step 6-Light independent
The calvin cycle converts 3CO2 molecules from the atmosphere to glucose
calvin cycle
The second of two major stages in photosynthesis (following the light reactions), involving atmospheric CO2 fixation and reduction of the fixed carbon into carbohydrate.
John Dalton was a scientist who proposed that all matter consists of atoms. At this stage, no one had yet discovered neutrons and the nucleus. As a result, Dalton's model consisted of a single atom i.e. the atom was the smallest object.
A mass spectrometer is an instrument that is able to see what is inside an atom. Scientists have been able to prove that the item is not the smallest object in the world. Atoms are made up of smaller objects called protons, neutrons and electrons.
We can, therefore, safely conclude that data from mass spectrometry has helped modern scientists to make modifications to Dalton's model. <span>
</span>
Answer:
67.5%
Explanation:
Step 1: Write the balanced equation for the electrolysis of water
2 H₂O ⇒ 2 H₂ + O₂
Step 2: Calculate the theoretical yield of O₂ from 17.0 g of H₂O
According to the balanced equation, the mass ratio of H₂O to O₂ is 36.04:32.00.
17.0 g H₂O × 32.00 g O₂/36.04 g H₂O = 15.1 g O₂
Step 3: Calculate the percent yield of O₂
Given the experimental yield of O₂ is 10.2 g, we can calculate its percent yield using the following expression.
%yield = (exp yield / theoret yield) × 100%
%yield = (10.2 g / 15.1 g) × 100% = 67.5%