1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorLugansk [536]
3 years ago
9

When looking up at the clouds, you can usually make out different shapes and figures with _____. cumulus clouds stratus clouds c

irrus clouds altostratus clouds
Desert climates can have very hot days and very cold nights. This is because _____. there is usually cloud coverage there is usually a clear sky there is usually precipitation there is usually hot or cold wind
Chemistry
1 answer:
MAXImum [283]3 years ago
4 0
The answer to the question stated above is cumulus clouds. 
<span>When looking up at the clouds, you can usually make out different shapes and figures with  cumulus clouds.
</span>Cumulus <span>low-level clouds. They </span>are the puffy, white, cotton-top clouds that look so soft. 
You might be interested in
How can one kg of iron melt more ice than 1 kg lead at 100 °C
Vanyuwa [196]

Answer:

Due to the specific heat capacity of iron, 0.444 J/(g·°C), is more than the specific heat capacity for lead, 0.160 J/(g·°C)

Explanation:

The given parameters are;

The metals provided to melt the ice and their temperature includes;

One kg (1000 g) of iron;

Specific heat capacity = 0.444 J/(g·°C)

Temperature = 100°C

1 kg (1000 g) of lead

Specific heat capacity = 0.160 J/(g·°C)

Temperature = 100°C

Therefore, the heat provided to the ice of mass m, and latent heat of 334 J/g at 0°C by the metals are as follows;

For iron, we have;

ΔQ = Mass × Specific heat capacity × Temperature change

ΔQ_{iron} = Heat obtained from the iron by the ice

ΔQ_{iron} = 0.444 m × 1000 × (100 - 0) = 44400 J

Heat absorbed by the ice for melting, H_l = Heat obtained from the iron

∴ Heat absorbed by the ice for melting, H_l = Mass of ice × Latent heat of ice

H_l = Mass of ice × 334 J/g = 44400 J

Mass of ice melted by the iron = 44400 J/334 (J/g) ≈ 132.9 g

Mass of ice melted by the iron ≈ 132.9 g

For lead, we have;

ΔQ = Mass × Specific heat capacity × Temperature change

ΔQ_{lead} = Heat obtained from the iron by the ice

ΔQ_{lead} = 0.160 m × 1000 × (100 - 0) = 16000 J

Heat absorbed by the ice for melting, H_l = Heat obtained from the iron

∴ Heat absorbed by the ice for melting, H_l = Mass of ice × Latent heat of ice

H_l = Mass of ice × 334 J/g = 16000 J

Mass of ice melted by the lead = 16000 J/334 (J/g) ≈ 47.9 g

Mass of ice melted by the lead ≈ 47.9 g

Therefore, mass of  ice melted by the iron, approximately 132.9 g, is more than mass of ice melted by the lead, approximately 47.9 g.

3 0
4 years ago
Calculate the energy (in kj/mol) required to remove the electron in the ground state for each of the following one-electron spec
Bess [88]

Explanation:

E_n=-13.6\times \frac{Z^2}{n^2}ev

where,

E_n = energy of n^{th} orbit

n = number of orbit

Z = atomic number

a) Energy change due to transition from n = 1 to n = ∞ ,hydrogen atom .

Z = 1

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{1^2}{(\infty)^2}eV=0

Let energy change be E for 1 atom.

E=E_{\infty}-E_1=0-(-13.6  eV)=13.6 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 13.6 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 13.6 \times 1.60218\times 10^{-22} kJ/mol

E'=1,312.17 kJ/mol

The energy  required to remove the electron in the ground state is 1,312.17 kJ/mol.

b) Energy change due to transition from n = 1 to n = ∞ ,B^{4+} atom .

Z = 5

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{5^2}{1^2}eV=-340 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{5^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-340eV)=340 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 340eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 340\times 1.60218\times 10^{-22} kJ/mol

E'=32,804.31 kJ/mol

The energy  required to remove the electron in the ground state is 32,804.31 kJ/mol.

c) Energy change due to transition from n = 1 to n = ∞ ,Li^{2+}atom .

Z = 3

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{3^2}{1^2}eV=-122.4 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{3^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-122.4 eV)=122.4 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 122.4 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 122.4\times 1.60218\times 10^{-22} kJ/mol

E'=11,809.55 kJ/mol

The energy  required to remove the electron in the ground state is 11,809.55 kJ/mol.

d) Energy change due to transition from n = 1 to n = ∞ ,Mn^{24+}atom .

Z = 25

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{25^2}{1^2}eV=-8,500 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{25^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-8,500 eV)=8,500 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 8,500eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 8,500 \times 1.60218\times 10^{-22} kJ/mol

E'=820,107.88 kJ/mol

The energy  required to remove the electron in the ground state is 820,107.88 kJ/mol.

4 0
4 years ago
A rock is an <br> of minerals.
Natasha_Volkova [10]
Rocks are minerals, made up of many minerals. There are 3 types of rocks which are Igneous, Sedementary, and Metamorphic.
5 0
3 years ago
Read 2 more answers
I need help ASAP........
Luba_88 [7]

Answer:

sodium hydroxide and hydrochloric acid is the reactants

7 0
3 years ago
The smallest ionic radius among the following. <br> Li<br> Mg<br> Na+<br> be+
dimaraw [331]
The correct answer is Be+

That is because it lost a single electron but still has the same number of protons, and thus the effective charge attracting each electron is greater, which in turn makes the radius even smaller
5 0
3 years ago
Other questions:
  • Two atoms bonded together will remain some distance apart, minimizing the Question 1 options: A) potential energy of the bond. B
    10·1 answer
  • Which of the following statements describes a basketball under high pressure (fully inflated) compared to a basketball under low
    7·1 answer
  • Imagine you have a 1.0 mL water sample containing 0.10 M hydrochloric acid, HCl. You want to get it to a safe pH of 6. How much
    9·1 answer
  • reddi tstudent has a thin copper beaker containing 100 g of a pure metal in the solid state. The metal is at 215°C, its exact me
    12·1 answer
  • What is the density of an object whose mass is 142.5 g and whose volume is 7.5 mL?
    5·2 answers
  • What is the Percent yield made if 3.9 grams of a substance were made experimentally while you calculated 3.6 grams of substance
    11·1 answer
  • Please help!-- 20 pts!
    14·2 answers
  • Help please guys anybody
    12·1 answer
  • 13.41g of Fe(NO3)2 is dissolved in 83.0mL of water. Calculate the molarity of the solution.
    5·1 answer
  • Blank + BaCl2 = BaSO4 + 2NaCl
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!