Answer:
4.13 moles of Fe.
Explanation:
Given data:
Moles of iron produced = ?
Moles of Fe₂O₃ = 3.5 mol
Moles of CO = 6.2 mol
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Now we will compare the moles of iron with CO and Fe₂O₃.
Fe₂O₃ : Fe
1 : 2
3.5 : 2/1×3.5 = 7 mol
CO : Fe
3 : 2
6.2 : 2/3×6.2 = 4.13 mol
The number of moles of iron produced by CO are less it will limiting reactant.
Thus, moles of iron formed in given reaction are 4.13 moles.
We can calculate the new volume of the gas using the Combined Gas Law:
(P1 x V1) / T1 = (P2 x V2) / T2
The initial volume, pressure, and temperature were 280 mL, 1.3 atm, and 291.15 K (changing the temperature into Kelvin is necessary), and the final volume, pressure, and temperature is V2, 3.0 atm, and 308.15 K. Plugging these values in and solving, we find that:
(P1 x V1) / T1 = (P2 x V2) / T2
(1.3 atm x 280 mL) / 291.15 K = (3.0 atm x V2) / 308.15 K
V2 = 128.42 mL
This makes sense considering the conditions, a small increase in temperature would make the gas expand but a significant increase in the pressure would cause the volume to decrease.
Hope this helps!
Answer:
How high the plants grow in the different soils.
Explanation:
The dependent variable is what happens as a result of what the experimenter changes.
The experimenter could measure how high the plants grow when placed in soil with different pH values.
They are all biotic factors, meaning they were once alive or were alive. (an abiotic factor is something that has never lived.) hope this helped.
It would be burning be cause when you freeze, evaporate, or melt anything it is just changing how fast the atoms are moving . Think of it like water, ice, and steam, they are all the same thing but in different forms because of melting, evaporating,and melting. Burning is breaking it down.