1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
8

Approximately what percentage of the weight of the human body is water?

Chemistry
2 answers:
kap26 [50]3 years ago
4 0
Some organisms, up to 90% of their body weight comes from water. <span> 60% of the human adult body is water. </span>The brain and heart are composed of 73% water, and the lungs are about 83% water.

Hope this helps!!
<><><><><><><>
Scilla [17]3 years ago
3 0
The average for male adults is about 60% and an female adult is around 50% depending on weight , age , and height 
You might be interested in
Determine the freezing point and boiling point of a solution that has 68.4 g of sucrose
Ymorist [56]

Answer:

Freezing T° of solution = - 3.72°C

Boiling T° of solution =  101.02°C

Explanation:

To solve this we apply colligative properties. Firstly, freezing point depression:

ΔT = Kf . m . i

ΔT = Freezing T° of pure solvent - Freezing T° of solution

Kf = Cryoscopic constant, for water is 1.86 °C/m

m = molality (moles of solute in 1kg of solvent)

i = Ions dissolved in solution

Our solute is sucrose, an organic compound so no ions are defined. i = 1.

Let's determine the moles: 68.4 g . 1mol/ 342g = 0.2 moles

molality = 0.2 mol / 0.1kg of water = 2 m

We replace data: ΔT = 1.86°C/m . 2m . 1

Freezing T° of solution = - 3.72°C

Now, we apply elevation of boiling point: ΔT = Kb . m . i

ΔT = Boiling T° of solution - Boiling T° of  pure solvent

Kf = Ebulloscopic constant, for water is 0.512 °C/m

We replace:

Boiling T° of solution - Boiling T° of pure solvent = 0.512 °C/m . 2 . 1

Boiling T° of solution = 0.512 °C/m . 2 . 1 + 100°C → 101.02°C

6 0
2 years ago
The combustion of 1.5011.501 g of fructose, C6H12O6(s)C6H12O6(s) , in a bomb calorimeter with a heat capacity of 5.205.20 kJ/°C
avanturin [10]

Answer : The internal energy change is -2805.8 kJ/mol

Explanation :

First we have to calculate the heat gained by the calorimeter.

q=c\times (T_{final}-T_{initial})

where,

q = heat gained = ?

c = specific heat = 5.20kJ/^oC

T_{final} = final temperature = 27.43^oC

T_{initial} = initial temperature = 22.93^oC

Now put all the given values in the above formula, we get:

q=5.20kJ/^oC\times (27.43-22.93)^oC

q=23.4kJ

Now we have to calculate the enthalpy change during the reaction.

\Delta H=-\frac{q}{n}

where,

\Delta H = enthalpy change = ?

q = heat gained = 23.4 kJ

n = number of moles fructose = \frac{\text{Mass of fructose}}{\text{Molar mass of fructose}}=\frac{1.501g}{180g/mol}=0.00834mole

\Delta H=-\frac{23.4kJ}{0.00834mole}=-2805.8kJ/mole

Therefore, the enthalpy change during the reaction is -2805.8 kJ/mole

Now we have to calculate the internal energy change for the combustion of 1.501 g of fructose.

Formula used :

\Delta H=\Delta U+\Delta n_gRT

or,

\Delta U=\Delta H-\Delta n_gRT

where,

\Delta H = change in enthalpy = -2805.8kJ/mol

\Delta U = change in internal energy = ?

\Delta n_g = change in moles = 0   (from the reaction)

R = gas constant = 8.314 J/mol.K

T = temperature = 27.43^oC=273+27.43=300.43K

Now put all the given values in the above formula, we get:

\Delta U=\Delta H-\Delta n_gRT

\Delta U=(-2805.8kJ/mol)-[0mol\times 8.314J/mol.K\times 300.43K

\Delta U=-2805.8kJ/mol-0

\Delta U=-2805.8kJ/mol

Therefore, the internal energy change is -2805.8 kJ/mol

5 0
3 years ago
HELP ME WITH ONE OR BOTH OF THESE QUEATIONS PLEASEEEE
marta [7]

Answer:

2. 181.25 K.

3. 0.04 atm.

Explanation:

2. Determination of the temperature.

Number of mole (n) = 2.1 moles

Pressure (P) = 1.25 atm

Volume (V) = 25 L

Gas constant (R) = 0.0821 atm.L/Kmol

Temperature (T) =?

The temperature can be obtained by using the ideal gas equation as illustrated below:

PV = nRT

1.25 × 25 = 2.1 × 0.0821 × T

31.25 = 0.17241 × T

Divide both side by 0.17241

T = 31.25 / 0.17241

T = 181.25 K

Thus, the temperature is 181.25 K.

3. Determination of the pressure.

Number of mole (n) = 10 moles

Volume (V) = 5000 L

Temperature (T) = –10 °C = –10 °C + 273 = 263 K

Gas constant (R) = 0.0821 atm.L/Kmol

Pressure (P) =?

The pressure can be obtained by using the ideal gas equation as illustrated below:

PV = nRT

P × 5000 = 10 × 0.0821 × 263

P × 5000 = 215.923

Divide both side by 5000

P = 215.923 / 5000

P = 0.04 atm

Thus, the pressure is 0.04 atm

6 0
3 years ago
students calculated the circumference of a globe to be 60.0 cm. The actual circumference of the glide is 63 cm. The percent devi
Naily [24]
#2. Percent error (or deviation) is calculated as ((TV-EV)/EV))*100
6 0
3 years ago
Read 2 more answers
.............................................................
mafiozo [28]

5 oxygen atoms are there in the product

4 0
3 years ago
Read 2 more answers
Other questions:
  • how many electrons in an atom can share the quantum numbers n=3, l=2, and ml=2? A.) 2 B.) 6 C.) 4 D.) 8
    6·1 answer
  • All of the following are benefits of recycling except?
    5·1 answer
  • PLEASE HELP ME&gt; 50 points<br> Compare and contrast 2-methylbutane with pentane
    7·1 answer
  • The mass of a block is 12 g and the volume is 6 ml. Calculate the density of the block.
    12·1 answer
  • True or False
    14·1 answer
  • Liquids are similar to gases in that they both have
    9·1 answer
  • Is this statement true or false?<br> Gas Giants all have their own moon
    5·1 answer
  • Ik im not right.. or am i?
    6·2 answers
  • How intermolecular forces are broken during evaporation?
    9·2 answers
  • Draw the reactants using the drawing tool. Keep in mind that one molecule of nitrogen has two bonded atoms, and one molecule of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!