Answer:Ionic compounds form when positive and negative ions share electrons and form an ionic bond. ... The positive ion, called a cation, is listed first in an ionic compound formula, followed by the negative ion, called an anion. A balanced formula has a neutral electrical charge or net charge of zero.
Explanation:Simple ions:
Perchlorate ClO4- IO3-
Chlorate ClO3- BrO3-
Chlorite ClO2-
Hypochlorite OCl- OBr-
Answer:
V ∝ n
Step-by-step explanation:
Suppose that pressure and temperature are constant.
If you try to force more molecules of air into a balloon, the balloon will expand.
This is an example of <em>Avogadro's Law</em>: the volume of a gas is directly proportional to the number of moles (particles).
V ∝ n
Answer:
In the Lewis structure of P4 there are 6 bonding pairs and 4 lone pairs of electrons.
Explanation:
The structure of tetrahedral molecule of P4 is provided below.
Each phosphorus atom has 5 valence electrons out of which 3 electrons involve in bonding and the rest 2 electrons exist as a lone pair that does not involve in bonding.Hence each phosphorus atom has one lone pair.In P4 molecule there are phosphorus atoms and hence 4 lone pairs in total.
As you can see in the figure, each phosphorus atom is bonded to the other three atoms.A bond is formed when two atoms share one electron each and the pair is called bonding pair.
From the figure we can see that there are 6 bonds in total.Each bond consist of one bonding pair of electrons and hence in total there are 6 bonding pairs of electrons.
Hence in a P4 molecule there are six bonding pairs and 4 lone pairs of electrons.
Answer:
C₂H₄O
CH₃CHO
Explanation:
I'm not sure if you want the molecular formula or the condensed structure, but I will give you both.
Molecular formula:
You have 2 carbons (C₂), 4 hydrogens (H₄), and 1 oxygen (O). The molecular formula will be C₂H₄O.
Condensed Structure:
You have a carbon bonded to three hydrogens (CH₃). This carbon is bonded to a carbon that is bonded to a hydrogen and oxygen (CHO). The condensed structure will be CH₃CHO.
The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.