1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
14

Write a use of reverberation

Physics
1 answer:
MakcuM [25]3 years ago
3 0

Hello there!

<u>definition of reverberation:</u> "Prolongation of a sound; resonance."

<u>reverberation in a sentence:</u> The school's special effects team added reverberation to the actress's monologue to make her speech more dramatic and the school play a little more interesting.

I hope this helps, have a great day! ^-^


You might be interested in
A 0.25 kg steel ball is tied to the end of a string and then whirled in a vertical circle at a constant speed v. The length of t
TiliK225 [7]

Answer:

Explanation:

Let the tension in the string be T . At the top of the circle , total force acting on them = T + mg . This will provide centripetal force

T + mg = m v² / r

4 + .25 x 9.8 = .25 x v² / .62

6.45 = .25 v² / .62

v² = 16

v = 4 m /s .

7 0
3 years ago
A cyclist is riding a bicycle at a speed of 22 mph on a horizontal road. The distance between the axles is 42 in., and the mass
stealth61 [152]

Answer:

The shortest distance is  S = 24.86 ft

Explanation:

The free body diagram of this question is shown on the first uploaded image

From the question we are told that

   The speed of the bicycle is v_b = 22\ mph = 22 * \frac{5280}{3600}   =  32.26 ft/s

     The distance between the axial is  d = 42 \ in

The mass center of the cyclist and the bicycle is m_c = 26 \ in  behind the front axle

The mass center of the cyclist and the bicycle is m_h = 40 \ in above the ground

   For the bicycle not to be thrown over the

     Momentum about the back wheel must be zero so

                \sum _B = 0

=>             mg (26) = ma(40)

=>             a = \frac{26}{40} g

Here  g = 32.2 ft/s^2

     So     a =  \frac{26}{40} (32.2)

             a =  20.93 ft/s^2

Apply the equation of motion to this motion we have

       v^2 = u^2 + 2as

 Where  u = 32.26 ft /s

             and v = 0 since the bicycle is coming to a stop

        v^2 = (32.26)^2 - 2(20.93) S

=>      S = 24.86 ft        

                 

5 0
3 years ago
Arrange the distances between Earth and various celestial objects in order from least to greatest. Use the conversion table to h
Kaylis [27]

distance to the star Betelgeuse: 640 ly

As we know that

1 ly = 63000 AU

also we know that

1AU = 1.5 \times 10^8 km

1 ly = 63000 (1.5 \times 10^8) = 9.45 \times 10^{12} km

So the distance of Betelgeuse = 640 ly

d_1 = 640 \times 9.45 \times 10^{12} = 6.05 \times 10^{15} m

distance to the star VY Canis Majoris: 3.09 × 10^8 AU

d_2 = 3.09\times 10^8 \times 1.5 \times 10^8 km

d_2 = 4.64 \times 10^{16} km

distance to the galaxy Large Magellanic Cloud: 49976 pc

1 pc = 3.262 ly = 3.262 \times 9.45 \times 10^{12} km

1pc = 3.08 \times 10^{13} km

now we have

d_3 = 49976 \times 3.08 \times 10^{13}

d_3 = 1.54 \times 10^{18} km

distance to Neptune at the farthest: 4.7 billion km

d_4 = 4.7 \times 10^9 km

now the order of distance from least to greatest is as following

1. distance to Neptune at the farthest

2. distance of Betelgeuse

3. distance to the star VY Canis Majoris

4. distance to the galaxy Large Magellanic Cloud

6 0
3 years ago
You need to determine the density of a ceramic statue. If you suspend it from a spring scale, the scale reads 28.4 NN . If you t
shtirl [24]

Answer:

2491.23 kg/m³

Explanation:

From Archimedes principle,

R.d = weight of object in air/ upthrust in water = density of the object/density of water

⇒ W/U = D/D' ....................... Equation 1

Where W = weight of the ceramic statue, U = upthrust of the ceramic statue in water, D = density of the ceramic statue, D' = density of water.

Making D the subject of the equation,

D = D'(W/U).................... Equation 2

Given: W = 28.4 N, U = lost in weight = weight in air- weight in water

U = 28.4 - 17.0 = 11.4 N,

Constant: D' = 1000 kg/m³.

Substitute into equation 2,

D = 100(28.4/11.4)

D = 2491.23 kg/m³

Hence the density of the ceramic statue = 2491.23 kg/m³

7 0
3 years ago
All waves change speed when they enter a new medium, but they don't always bend. When does bending occur?
Anastaziya [24]
Bending occurs when one side of the wave enters the new medium before the other side of the wave. ... The bending occurs because the two sides of the wave are traveling at different speeds.
5 0
3 years ago
Other questions:
  • Based on Planet Z's size, orbital distance, and rotation rate, which of the following properties is it likely to have?
    7·1 answer
  • In the United States, most of our energy comes from this non-renewable resource, which has a negative effect on the environment.
    11·2 answers
  • What common laboratory measuring device will we likely always use in experiments that measure enthalpy changes?
    13·1 answer
  • Why does a satellite in a circular orbit travel at a constant speed?
    6·1 answer
  • Is weight included in free body diagram
    7·2 answers
  • Match each item to its best description.
    6·2 answers
  • An electron falls through a distance d in a uniform electric field of magnitude E. Thereafter, the direction of the field is rev
    12·2 answers
  • Electronegativity
    5·1 answer
  • Kinetic Energy HELP! Brainly included
    14·1 answer
  • We've been learning new ways to use our ears. How do the ears and voice work together?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!