Answer:
High boiling and melting points: Hydrogen bonds increase the amount of energy required for phase changes to occur, thereby raising the boiling and melting points.
High specific heat: Hydrogen bonds increase the amount of energy required for molecules to increase in speed, thereby raising the specific heat.
Lower density as a solid than as a liquid: Hydrogen bonds increase the volume of the solid by holding molecules apart, thereby decreasing the density
High surface tension: Hydrogen bonds produce strong intermolecular attractions, which increase surface tension
Explanation:
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
<span>C is the correct answer. Electron microscopes require a vacuum to work, so living cells cannot be seen because they cannot respire. Light microscopes use a ray of visible light instead of a beam of electrons to magnify something so it can be seen by the naked eye. There are two different types of electron microscope: transmission (TEM) and scanning (SEM).</span>