Answer:
D. 15 m/s downward
Explanation:
v = at + v₀
v = (-9.8 m/s²) (1.5 s) + (0 m/s)
v = -14.7 m/s
Rounded to two significant figures, the answer is D, 15 m/s downward.
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
1) 0N... friction opposes the motion of an object, since the block is at rest there is no motion thus no friction
2) F=ma
= (5.5kg)(30m/s)
=165 N
I Think Its True My Dude Or Dudette
.
Hope this helps
.
Zane
Answer:
the second one!
Explanation:
the question is well, the question, a hypothesis is an educated guess on what you think will be the outcome