<h2><u>We have</u>,</h2>
- Initial velocity (u) = 0 m/s
- Time taken (t) = 2.9s
- Acceleration due to gravity (g) = + 10 m/s² [Down]
<h2><u>To calculate</u>,</h2>
- Final velocity (v)
- Height (h)
<h2><u>Solution</u><u>,</u></h2>
→ v = u + gt
→ v = 0 + 10(2.9)
→ v = 29 m/s
… ( Ans )
And,
→ h = ut + ½gt²
→ h = 0(2.9) + ½ × 10 × (2.9)²
→ h = 5 × 8.41
→ h = 42.05 m
… ( Ans )
<span>122.0 km/hr. First let’s make sure all of our units are in the base meter form: i.e. convert 5km to 5000m. (We will convert back to km later). The first thing to do is look at the equation relating velocity, acceleration, and distance: Vf^2 = Vi^2 + 2*a*d, where Vf is final velocity, Vi is initial velocity, a is acceleration, and d is distance. 25^2 = 10^2 + 2*a*5000 =?> 625 = 100 +10000a => a= 0.0525m/s^2. Now that we have acceleration, we can use the same equation again with different numbers.: Vf^2 = Vi^2 + 2*a*d = 25^2 + 2*0. 0525m*5000 = 625 + 525 =1150 => Vf^2 = 1150 => 33.9m/s. Convert to km/hour: 33.9m/s * 1km/1000m *60s/1min * 60min/ 1 hr = 122.0 km/hr.</span>
Answer:
One example of a fixed pulley is a Flag Pole
Explanation:
A good example of a fixed pulley is a flag pole: When you pull down on the rope, the direction of force is redirected by the pulley, and you raise the flag. Other examples of movable pulleys include construction cranes, modern elevators, and some types of weight lifting machines at the gym.
A obviously because hand against walls equals gravity to me
:)
I hope this helped you on whatever you're doing.
Have a lovely day <3