Matter.
A force of attraction that holds atom together
<span>When atoms react they form a chemical bond which is defined as a force of attraction that holds atom together. A force of attraction is defined as a kind of force that draws two or more objects together regardless of distance. There are two major categories of forces of attraction, one is intramolecular and intermolecular. Intramolecular forces is the presence of forces in atoms internally. While intermolecular is the force by which the force that is existent in two or more elements. </span>
Answer:
here
Explanation:
0.000141 to kilowatt-hours. hope this helped
Answer: The entropy change of the surroundings will be -17.7 J/K mol.
Explanation: The enthalpy of vapourization for 1 mole of acetone is 31.3 kJ/mol
Amount of Acetone given = 10.8 g
Number of moles is calculated by using the formula:

Molar mass of acetone = 58 g/mol
Number of moles = 
If 1 mole of acetone has 32.3 kJ/mol of enthalpy, then
0.1862 moles will have = 
To calculate the entropy change for the system, we use the formula:

Temperature = 56.2°C = (273 + 56.2)K = 329.2K
Putting values in above equation, we get
(Conversion Factor: 1 kJ = 1000J)
At Boiling point, the liquid phase and gaseous phase of acetone are in equilibrium. Hence,


Answer:
The specific heat of sodium is 1,23J/g°C
Explanation:
Using the atomic weight of sodium (23g/mol) and the atomic weight definition, we have that each mole of the substance has 23 grams of sodium.
starting from this, we use the atomic weight of sodium to convert the units from J / mol ° C to J / g ° C
