Calculating for the moles of H+
1.0 L x (1.00 mole / 1 L ) = 1 mole H+
From the given balanced equation, we can use the stoichiometric ratio to solve for the moles of PbCO3:
1 mole H+ x (1 mole PbCO3 / 2 moles H+) = 0.5 moles PbCO3
Converting the moles of PbCO3 to grams using the molecular weight of PbCO3
0.5 moles PbCO3 x (267 g PbCO3 / 1 mole PbCO3) = 84.5 g PbCO3
The full sentences are given below:
1. During the process of erosion and deposition, sediments that are the SMALLEST in size will be carried the greatest distance before being deposited.
Erosion and deposition are the methods by which sand and rock particles are moved from one place to another. The erosion can be caused by water or wind. Water and wind have the capacity to transport particle from one location and deposit them in another location. How far the erosion is able to move the particles depend on the weight of the particles. It is easier for erosion to carry small particles over a long distance than for it to carry large particles over the same distance.
2. Most METAMORPHIC rocks form under conditions found a few kilometer under the earth surface.
Metamorphic rocks generally are formed from existing rocks. The existing rocks are usually subjected to heat and pressure, which cause radical changes in the chemical and physical properties of the rock. Metamorphic rocks can be formed underneath the earth surface if they are subjected to high temperature and pressure by the rock layers above them.
A volcano is formed when magma (Lava) spews up from deep within the earth. After each eruption the Volcano gets bigger and bigger, so basically after periods of time the volcano will get larger. Lava will rise in cracks in the earth or weak spots in the earths crust. The pressure is relieved thus resulting in a volcanic eruptions it forms the new crust and then eventually builds up in that spot making a volcano. They also form in places called hot spots and various other places.
To calculate the molarity you only need to know the number of moles in the solution and the volume of that solution. This exercise gives both and with that you divide moles by volume(usually in liters).
500 ml equals 0,5 L
molarity= number of moles/ volume
molarity=0,75 x 0,5
= 0,375 mol/L