Answer: The density of chloroform is 1.47 g/mL
Explanation : Given,
Volume = 40.5 mL
Mass of cylinder = 85.16 g
Mass of cylinder and liquid = 145.10 g
First we have to calculate the mass of liquid (chloroform).
Mass of liquid = Mass of cylinder and liquid - Mass of cylinder
Mass of liquid = 145.10 g - 85.6 g
Mass of liquid = 59.5 g
Now we have to calculate the density of liquid (chloroform).
Formula used:

Now putting g all the given values in this formula, we get:


Therefore, the density of chloroform is 1.47 g/mL
Answer:
1.01atm is the pressure of the gas
Explanation:
The difference in heights in the two sides is because of the difference in pressure of the enclosed gas and the atmospheric pressure. This difference is in mm of the nonvolatile liquid. The difference in mm Hg is:
32.3mm * (0.993g/mL / 13.6g/mL) = 2.36mmHg
As atmospheric pressure is 765mm Hg and assuming the gas has more pressure than the atmospheric pressure (There is no illustration), the pressure of the gas is:
765mm Hg + 2.36mm Hg = 767.36 mmHg
In atm:
767.36 mmHg * (1atm / 760 mmHg) =
1.01atm is the pressure of the gas
We will assume helium to behave as an ideal gas and apply the ideal gas law:
PV = nRT
For pressure measured in atmospheres and volume measured in liters, the value of the molar gas constant is 0.082. Therefore:
T = PV / nR
T = (2.57 x 15.5) / (1.2 x 0.082)
T = 404.8 Kelvin
<h3>
Answer:</h3>
7.51 × 10²² atoms S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.00 g S
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of S - 32.07 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig figs and round. We are given 3 sig figs.</em>
7.51107 × 10²² atoms S ≈ 7.51 × 10²² atoms S