Since the formula for the base of the cylinder is

, multiplying that by 10 we get

. Hope this helps!
Answer:
A = (0, -8)
Step-by-step explanation:
B = (A+C)/2 . . . . the midpoint is the average of the end points
A = 2B -C = 2(-3, -5) -(-6, -2) . . . solve for A, substitute point values
A = (0, -8)
Answer:

Step-by-step explanation:
Use the Pythagorean theorem. 
a and b are the two side lengths
c is the hypotenuse (value across from the right angle)
Plug in the values that you are given.

Solve for x


x=

Answer: 37 units
Step-by-step explanation:
This also works as the height of the triangle.
This also works as the base of the triangle.
Let's call pink ''a'', and blue ''b''. The side we're looking for ''c'' is the hypothenuse.
To find the values of a and b, use the area formula of a square and solve for a side. In this case, since we're going to need the squared values, this step can be omitted.

![s=\sqrt[]{A}](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7BA%7D)
Let's work with Blue.
![s=\sqrt[]{144units^2} \\s=12units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B144units%5E2%7D%20%5C%5Cs%3D12units)
Now Pink.
![s=\sqrt[]{1225units^2}\\s=35units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B1225units%5E2%7D%5C%5Cs%3D35units)
So we have a triangle with a base of 35 units and a height of 12 units.
Now let's use the pythagoream's theorem to solve.
![c^2=a^2+b^2\\c=\sqrt[]{a^2+b^2} \\c=\sqrt[]{(12units)^2+(35units)^2}\\c=\sqrt[]{144units^2+1225units^2}\\ c=\sqrt[]{1369units^2}\\ c=37units](https://tex.z-dn.net/?f=c%5E2%3Da%5E2%2Bb%5E2%5C%5Cc%3D%5Csqrt%5B%5D%7Ba%5E2%2Bb%5E2%7D%20%5C%5Cc%3D%5Csqrt%5B%5D%7B%2812units%29%5E2%2B%2835units%29%5E2%7D%5C%5Cc%3D%5Csqrt%5B%5D%7B144units%5E2%2B1225units%5E2%7D%5C%5C%20c%3D%5Csqrt%5B%5D%7B1369units%5E2%7D%5C%5C%20c%3D37units)
Answer:
0.06245
Step-by-step explanation:
Decrease 7/12=0.583
from 9 p.m to 6:20 am is 9:20= (9+20/60) = 9.33 hours
0.583/9.33 = 0.06248
round the 0.06248 to 0.06245