<u>Answer:</u> 2.00 atm
<u>Explanation:</u>
The gas is kept under the same temperature in this problem. Assuming the amount of gas is constant, we can apply the Boyle's law.
The Boyle's law equation,
P₁V₁ = P₂V ₂
Plug in the values,
1.00 atm x 4.0 L = P₂ x 2.0 L
Simplify,
4.00 atm L = 2 P₂ L
Now flip the equation,
2 P₂ L = 4.00 atm L
Dividing both sides by 2 we get,
P₂ = 2.00 atm
4P + 502 -> P4O10 this is the answer
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
H3O+(aq) + OH-(aq) --> 2H2O (l)
NaHCO3(s) --> NaH 2+ (aq) + CO3 2- (aq)
NaH 2+ (aq) + H2O (l) --> Na+ (aq) + H3O+ (aq)
H2O (l) + CO3 2- (aq) --> OH- (aq) + HCO3- (aq)
(I'm not completely sure if I did the third question right) I'm sorry if I got it wrong