Answer : When a parallel circuit is built the voltage across each of the components remains the same, also the total current passed is the equal to sum of the currents passing through each components in the circuits.
When 2 or more components are tried to be connected in parallel they maintain the same potential difference (in voltage) across their ends of the circuit.
The potential differences across the components are the observed to be same in magnitude, and they have identical polarities between them.
Then, this same voltage is applicable to all circuit components connected in parallel.
So, if each bulb is wired to the battery in a separate loop, the bulbs will be in parallel series.
Answer: <span>Molecular geometry around each carbon atom in a saturated hydrocarbon is
Tetrahedral.
Explanation: </span> In saturated hydrocarbons (-CH₂-) the central atom (
carbon) is bonded to either three or two hydrogen atoms and one or two carbon atoms. So, the central atom is having four electron pairs and all pairs are bonding pairs and lacks any lone pair of electron. According to
Valence Shell Electron Pair Repulsion (VSEPR)
Theory the central atom with four bonding pair electrons and zero lone pair electrons will attain a
tetrahedral geometry with
bond angles of 109°.
Answer : It take time for the concentration to become 0.180 mol/L will be, 277.8 s
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.180 mol/L
= Initial concentration = 0.360 mol/L
Putting values in above equation, we get:


Hence, it take time for the concentration to become 0.180 mol/L will be, 277.8 s
Answer:I think it’s mechanical energy
Explanation: