Answer:
Explanation:
The river bank can expand due to the water breaking apart and move for sediment.
Li+ has a smaller ionic radius than K+
and smaller molecules have more collisions/interactions between each other
<h3>What is ion-solvent interaction ?</h3>
In the case of ion-solvent interactions, the state in which the interac-tions exist is an obvious one; it is the situation in which ions are inside the solvent.
- Ions are charged particles, and charges interact with other charges. So there will also be ion-ion, as well as ion-solvent, interactions in the solution.
- In the process of solvation, ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes.
Learn more about Ion-solvent interaction here:
brainly.com/question/21307101
#SPJ4
Answer:
334.2× 10²³ molecules
Explanation:
Given data:
Mass of water = 1 Kg ( 1000 g )
Number of molecules = ?
Solution:
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 1000 g/ 18 g/mol
Number of moles = 55.5 mol
1 mole contain 6.022× 10²³ molecules
55.5 mol×6.022× 10²³ molecules
334.2× 10²³ molecules
Answer:
See explanation
Explanation:
Hello there!
In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:

Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:
![Ksp=[Ag^+][Cl^-]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%2B%5D%5BCl%5E-%5D)
And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:

I - 0 0
C - +x +x
E - x x
Which leads to the following modified equilibrium expression:

Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.
Regards!
Answer:
I don't know the ans please search on the Google you will get
And don't forget to mark me as brainlest please guys and follow me back please please please please please
And I will help you tooooooooooooooooo and follow u back if you follow me