Answer:

Explanation:
To solve this problem, we can use the Combined Gas Laws:

Data:
p₁ = 1.7 kPa; V₁ = 7.5 m³; T₁ = -10 °C
p₂ = ?; V₂ = 3.8 m³; T₂ = 200 K
Calculations:
(a) Convert temperature to kelvins
T₁ = (-10 + 273.15) K = 263.15 K
(b) Calculate the pressure

First identify which is being oxidized and reduced. In this case, the Mg is being oxidized and the Hg is being reduced.
Mg --> Mg+2
<span>Hg+2 --> Hg+1
</span>
Then you have to balance each half reaction first with electrons before adding them together in one equation

⇒

and

⇒
and then combine them together to form

⇒

It isn't necessary to keep the electrons but its essential to know how many there are in order to know how many are in the equation in order to calculate the reaction energy. Note: A<span>dd H+ and H2O to balance the H's and O's in acidic solution if needed.</span>
Answer: released to; absorbed from
- In an exothermic reaction, energy is released to the surroundings.
- In an endothermic reaction, energy is absorbed from the surroundings.
Explanation:
An exothermic reaction is a chemical reaction that occurs spontaneously and brings about the release of energy to the surroundings. Hence, the reacting vessel feels hot as the reaction proceeds.
An endothermic reaction, on the other hand, does not occur spontaneously and proceed only when energy is absorbed from the surroundings. Hence, the reacting vessel feels cold as the reaction proceeds.