Since cells are hard to see the microscope helped them see. scientist were able to actually see cells in tissues placed under the microscope.
<h2>
Answer:</h2>
44.06 g/mol
<h3>
Explanation:</h3>
We are given;
- Number of moles of unidentified gas as 1.674×10^-4 mol
- Time of effusion of unidentified gas 86.6 s
- Number of moles of Argon gas as 1.715×10^-4 mol
- Time of effusion of Argon gas is 84.5 s
We are supposed to calculate the molar mass of unidentified gas
<h3>Step 1: Calculate the effusion rates of each gas</h3>
Effusion rate = Number of moles/time
Effusion rate of unidentified gas (R₁)
= 1.674×10^-4 mol ÷ 86.6 s
= 1.933 × 10^-6 mol/s
Effusion rate of Argon gas (R₂)
= 1.715×10^-4 mol ÷ 84.5 sec
= 2.030 × 10^-6 mol/s
<h3>Step 2: Calculate the molar mass of unidentified gas</h3>
- Assuming the molar mass of unidentified gas is x;
- We can use the Graham's law of effusion to find x;
- According to Graham's law of diffusion;

But, Molar mass of Argon is 39.948 g/mol
Therefore;


Solving for X
x = 44.06 g/mol
Therefore, the molar mass of the identified gas is 44.06 g/mol
Answer:

Explanation:
You calculate the energy required to break all the bonds in the reactants.
Then you subtract the energy needed to break all the bonds in the products.
2H₂ + O₂ ⟶ 2H-O-H
Bonds: 2H-H 1O=O 4H-O
D/kJ·mol⁻¹: 436 498 464
