Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law:
where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means
and 
Lastly, we must calculate the number of moles of
there are. Given 0.80g of
, we will need to convert with the molar mass of
. Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2: 
Thus, 
Isolating V in the Ideal Gas Law:


...substituting the known values, and simplifying...


So, 0.80g of
would occupy 0.56L at STP.
The pressure of the gas is expected to increase in accordance to Boyle's law.
<h3>What is Boyle's law?</h3>
Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
By implication, when the piston is lowered and the volume of the gas is decreased, the pressure of the gas is expected to increase in accordance to Boyle's law.
Learn more about Boyle's law: brainly.com/question/1437490
Thallium has got 81 protons
<u>Have a nice days.......</u>
The reaction of iron sulfide (FeS) with hydrochloric acid (HCl) results in the formation of ferrous chloride (FeCl2) and hydrogen sulfide (H2S) gas. The reaction can be shown as follows:
FeS (s) + HCl(aq) ---- FeCl2(s) + H2S(g)
The bubbles indicate the formation of H2S gas which is a chemical change. The formation of bubbles indicates this change as it suggests that the reactants are combing to form products i.e. it signals a chemical reaction.
Answer:
Large change in temperature makes heat flow fast.
Explanation: