Answer:
6.21 rad/s
1.3041 m/s, 0.567 m/s²

Explanation:
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration = 2.3 rad/s²
= Angle of rotation
t = Time taken = 2.3 s
Equation of rotational motion

The angular speed is 6.21 rad/s
Linear velocity is given by

Linear velocity is 1.3041 m/s
Tangential acceleration is given by

Tangential acceleration is 0.567 m/s²

In degress the angle would be

From x axis it would be

The angle is
from x axis
Answer:
200 K
Explanation:
0 °C = 273 K
-73°C = 273 K - 73 K = 200 K
Answer: High tides and low tides are caused by the Moon. The Moon's gravitational pull generates something called the tidal force. The tidal force causes Earth—and its water—to bulge out on the side closest to the Moon and the side farthest from the Moon. These bulges of water are high tides.
Explanation:
<h2><em>A reference point is a place or object used for comparison to determine if something is in motion. An object is in motion if it changes position relative to a reference point. You assume that the reference point is stationary, or not moving.</em></h2>
Answer:
B) R1 = 6 V and R2 = 6V
Explanation:
In series, both resistors will carry the same current.
that current will be I = V/R = 12 / (10 + 10) = 0.6 A
The voltage drop across each resistor is V = IR = 0.6(10) = 6 V