Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
well if each square is 6 km, then the car DOES go 6 km, but it also moves WEST, not east. i would say that since its displacement not distance, its 2 km WEST :)
Answer:
The weight of body is 1.3040 gram.
Explanation:
Given that,
The weight y of a fiddler crab is directly proportional to the 1.25 power of the weight x of its claws.
Suppose a crab with a body weight of 1.8 gram has claws weighing 1.1 gram.
Estimate the weight of a fiddler crab with claws weighing 0.85 gram.
Determine the weight of crab body
We need to calculate the value of proportional constant



Put the value into the formula


We need to calculate the crab weight

Here, x = 0.85 g
Put the value into the formula


Hence, The weight of body is 1.3040 gram.
Uhhhhhhhhhhhhhhhh ehatatatatar
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m