Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
The kinetic energy is 
Explanation:
From the question we are told that
The radius of the orbit is 
The gravitational force is 
The kinetic energy of the satellite is mathematically represented as

where v is the speed of the satellite which is mathematically represented as

=> 
substituting this into the equation

Now the gravitational force of the planet is mathematically represented as

Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
![KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B%201%7D%7B2%7D%20%2A%5B%5Cfrac%7BGMm%7D%7Br%5E2%7D%5D%20%2A%20r)
=> 
substituting values


Answer:
56
Explanation:
I just want the points to be completely honest with you.
Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)