Answer:Mass of the body = 20 kg.
Final Velocity = 5.8 m/s.
Initial velocity = 0
Time = 3 seconds.
Using the Formula,
Acceleration = (v - u)/ t
= (5.8 - 0)/ 3
= 1.6 m /s².
Now, Using the Formula,
Force = mass × acceleration
= 20 × 1.6
=
Explanation: I REALLY HOPE THIS HELPS I'M KINDA NEW AT THIS :] :]
Answer:
Police officer
Explanation:
Because police officers wants to gather information on what happens and question people to know everything. That is what Derick is doing
Answer:
Second Choice.
Explanation:
Jack's Power = W/t
Jill's Power = 2W/(0.5)*t
2/0.5 = 4
Jill's Power = 4*W/t
Jill's Power is 4 times greater than Jack's
Second Choice
Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
Answer:
Acceleration and velocity Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to accelerate in the direction of the force.