<span>The bullfrog is sitting at rest on the log. The force of gravity pulls down on the bullfrog. We can find the weight of the bullfrog due to the force of gravity.
weight = mg = (0.59 kg) x (9.80 m/s^2)
weight = 5.782 N
The bullfrog is pressing down on the log with a force of 5.782 newtons. Newton's third law tells us that the log must be pushing up on the bullfrog with a force of the same magnitude. Therefore, the normal force of the log on the bullfrog is 5.782 N</span>
A = .3*g = 2.94 m/s²
<span>t = v/a = 9/2.94 = 3.061 sec </span>
<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
Answer: 
Explanation:
Given
Distance putty has to travel is 3.5 m
The initial speed of putty is 9.50 m/s
Using equation of motion to determine the velocity of putty just before it hits ceiling


So, the velocity of putty just before hitting is 
Answer:
KE + PE = KE + PE
Explanation:
In a closed system, the mechanical energy of the system is constant.
Mechanical energy is given by the sum of kinetic energy and potential energy; mathematically:
U = KE + PE
where
KE is the kinetic energy
PE is the potential energy
This means that if we consider two situations, one at the beginning and one at the end, the value of U will not change if the system is closed; this means that the sum KE + PE will remain the same, so we can write:
KE + PE = KE + PE