The balanced equation for the reaction is as follows
Na₂CO₃ + 2HCl --> 2NaCl + CO₂ + H₂O
stoichiometry of Na₂CO₃ to HCl is 1:2
number of Na₂CO₃ moles reacted = molarity x volume
number of Na₂CO₃ moles = 0.100 mol/L x 0.750 L = 0.0750 mol
according to molar ratio of 1:2
1 mol of Na₂CO₃ reacts with 2 mol of HCl
then 0.0750 mol of Na₂CO₃ mol reacts with - 2 x 0.0750 = 0.150 mol
molarity of given HCl solution is 1.00 mol/L
molarity is defined as the number of moles of solute in 1 L of solution
there are 1.00 mol in 1 L of solution
therefore there are 0.150 mol in - 0.150 mol / 1.00 mol/L = 0.150 L
volume of HCl required is 0.150 L
Answer:
b. mercury
Explanation:
Fishes and some other sea foods are are known to concentrate mercury in their bodies. Consumption of these products gradually accumulate mercury in the body over time.
More specifically, fishes like swordfish, king mackerel and shark are known to concentrate higher amount of mercury than other species of fishes. Hence, limiting their consumption will protect humans from mercury poisoning.
The correct option is b.
The atoms of elements can gain or lose electrons and become ions. Ions are charged particles that have gained or lost electrons. The atoms of elements can gain or lose electrons to form monatomic ions (made from a single atom of an element).
The answer is: 1.5 moles of oxygen are present.
V(O₂) = 33.6 L; volume of oxygen.
p(O₂) = 1.0 atm; pressure of oxygen.
T = 0°C; temperature.
Vm = 22.4 L/mol; molar volume at STP (Standard Temperature and Pressure).
At STP one mole of gas occupies 22.4 liters of volume.
n(O₂) = V(O₂) ÷ Vm.
n(O₂) = 33.6 L ÷ 22.4 L/mol.
n(O₂) = 1.50 mol; amount of oxygen.
The answer is C, hydrogen gas. This is because in single replacement reactions, the single element (here Magnesium) replaces whichever element in the compound it corresponds to. Because Mg loses electrons since it’s a metal, it will replace the element which also loses electrons, which is Hydrogen here. So when they switch places, MgCl2 and H2 are made— and H2 is the hydrogen gas.