Answer:
D. The chemical formula
Explanation:
For example, in the compound KCl, we know that there are two elements present because you can see it in the chemical formula. We know that KCl consists of potassium and chloride ions.
Answer:
True
Explanation:
In pi bonds, the electron density concentrates itself between the atoms of the compound but are present on either side of the line joining the atoms. Electron density is found above and below the plane of the line joining the internuclear axis of the two atoms involved in the bond.
Pi bonds usually occur by sideways overlap of atomic orbitals and this leads to both double and triple bonds.
For equal moles of gas, temperature can be calculated from ideal gas equation as follows:
P×V=n×R×T ...... (1)
Initial volume, temperature and pressure of gas is 3.25 L, 297.5 K and 2.4 atm respectively.
2.4 atm ×3.25 L=n×R×297.5 K
Rearranging,
n\times R=0.0262 atm L/K
Similarly at final pressure and volume from equation (1),
1.5 atm ×4.25 L=n×R×T
Putting the value of n×R in above equation,
1.5 atm ×4.25 L=0.0262 (atm L/K)×T
Thus, T=243.32 K
Answer:
n = 12.18 moles
Explanation:
Given that,
The volume of a canister, V = 1 L
The temperature of the canister, T = 100 K
Pressure, P = 100 atm
We need to find the number of moles of gas. Let there are n number of moles. We know that,
PV = nRT
Where
R is gas constant, R = 0.0821 L*atm/mol*K

Hence, there are 12.18 moles of gas.
<span>CH</span>₃<span>CH</span>₂<span>COOH + H</span>₂<span>O </span>↔ <span> CH</span>₃<span>CH</span>₂<span>COO</span>⁻<span> + H</span>₃<span>O</span>⁺<span>
</span>
pH = 0.5 pKa + 0.5 pCa
0.5 pCa = pH - 0.5 pKa
= 4.2 - (0.5 * (-log 1.34 x 10⁻⁵)) = 1.76
pCa = 3.53
Ca = antilog - 3.52 = 3 x 10⁻⁴
where Ca is the acid concentration