Answer:
When octane and oxygen gas are burned in our cars, carbon dioxide and water come out of the exhaust. The increase in carbon dioxide in the atmosphere is causing global warming. 4.
Explanation:
The change in temperature of the metal is 6.1°C. Details about change in temperature can be found below.
<h3>How to calculate change in temperature?</h3>
The change in temperature of a substance can be calculated by subtracting the initial temperature of the substance from the final temperature.
According to this question, a 25.0 g sample of metal at 16.0 °C is warmed to 22.1 °C by 259J of energy.
This means that the change in temperature of the metal can be calculated as:
∆T = 22.1°C - 16°C
∆T = 6.1°C
Therefore, the change in temperature of the metal is 6.1°C.
Learn more about change in temperature at: brainly.com/question/19051558
#SPJ1
Answer: The value of
for the half-cell reaction is 0.222 V.
Explanation:
Equation for solubility equilibrium is as follows.

Its solubility product will be as follows.
![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
Cell reaction for this equation is as follows.

Reduction half-reaction:
, 
Oxidation half-reaction:
,
= ?
Cell reaction: 
So, for this cell reaction the number of moles of electrons transferred are n = 1.
Solubility product, ![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
= 
Therefore, according to the Nernst equation
At equilibrium,
= 0.00 V
Putting the given values into the above formula as follows.

= 
= 0.577 V
Hence, we will calculate the standard cell potential as follows.



= 0.222 V
Thus, we can conclude that value of
for the half-cell reaction is 0.222 V.
2Na (s) + Cl2 (g) = 2NaCl (s)
Answer:
The answer is
<h2>32 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume = 40 mL
density = 0.80 g/mL
The mass is
mass = 40 × 0.8
We have the final answer as
<h3>32 g</h3>
Hope this helps you