I think that the answer could be A. X and Y
Answer:
The answer to your question is 8.21 g of H₂O
Explanation:
Data
mas of water = ?
mass of hydrogen = 4.6 g
mass of oxygen = 7.3 g
Balanced chemical reaction
2H₂ + O₂ ⇒ 2H₂O
Process
1.- Calculate the atomic mass of the reactants
Hydrogen = 4 x 1 = 4 g
Oxygen = 16 x 2 = 32 g
2.- Calculate the limiting reactant
Theoretical yield = H₂/O₂ = 4 / 32 = 0.125
Experimental yield = H₂/ O₂ = 4.6/7.3 = 0.630
From the results, we conclude that the limiting reactant is Oxygen because the experimental yield was higher than the theoretical yield.
3.- Calculate the mass of water
32 g of O₂ ---------------- 36 g of water
7.3 g of O₂ --------------- x
x = (7.3 x 36) / 32
x = 262.8 / 32
x = 8.21 g of H₂O
We don't know what statement you want us to choose from. But, protons have a positive charge, and they are what makes an atom a certain atom.
If the gases are at the same temperature and pressure, the ratio of their effusion rates is directly proportional to the ratio of the square roots of their molar masses:
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
Where
- R₁ and R₂ are the rates of the two gas
- M₁ and M₂ are the molar masses of the two gas
From the Graham's law equation, we can see that the ratio of the rates of effusion of the two gases is directly proportional to the square root of their molar masses
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
Answer:
Azide synthesis is the first method on the table of synthesis of primary amines. The Lewis structure of the azide ion, N3−, is as shown below.
an azide ion
An “imide” is a compound in which an N−−H group is attached to two carbonyl groups; that is,
imide linkage
You should note the commonly used trivial names of the following compounds.
phthalic acid, phthalic anhydride, and phthalimide
The phthalimide alkylation mentioned in the reading is also known as the Gabriel synthesis.
If necessary, review the reduction of nitriles (Section 20.7) and the reduction of amides (Section 21.7).
Before you read the section on reductive amination you may wish to remind yourself of the structure of an imine (see Section 19.8).
The Hofmann rearrangement is usually called the Hofmann degradation. In a true rearrangement reaction, no atoms are lost or gained; however, in this particular reaction one atom of carbon and one atom of oxygen are lost from the amide starting material, thus the term “rearrangement” is not really appropriate. There is a rearrangement step in the overall degradation process, however: this is the step in which the alkyl group of the acyl nitrene migrates from carbon to nitrogen to produce an isocyanate.
Explanation: