The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate (
) = 125.3 grams
We know;
molar mass of calcium phosphate (
) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate (
) = 120 + 3(95)
molar mass of calcium phosphate (
) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions(
) = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>
1) Ca-37, with a half-life of 181.1(10) ms.
739 is the number of atoms of O in 92.3 moles of Cr3(PO4)2.
Explanation:
Molecular formula given is = Cr3(PO4)2
number of moles of the compound is 92.3 moles
number of 0 atoms in 92.3 moles =?
From the chemical formula 1 mole of the compound has 8 atoms of oxygen
So, it can be written as
1 mole Cr3(PO4)2 has 8 atoms of oxygen
92.3 moles of Cr3(PO4)2 has x atoms of oxygen
= 
x = 8 x 92.3
x = 738.4 atoms
There will be 739 oxygen atoms in the 92.3 moles of Cr3(PO4)2.
Energy can be conserved by efficient energy use.
Answer: Option A
<u>Explanation:</u>
Energy can be transferred from one form to another, but it cannot be destroyed or created. So it can be conserved if efficiently used. Thus efficient usage of energy lead to conservation of energy. Due to conservation of energy, the forces can be renewable and non-renewable.
So, we should know how the input energy can be completely converted to another form of energy leading to efficient usage of energy without any loss. As if there is no loss, input energy will be equal to output energy leading to 100% efficiency.