V ( H2SO4) = 35 mL / 1000 => 0.035 L
M ( H2SO4) = ?
V ( NaOH ) = 25 mL / 1000 => 0.025 L
M ( NaOH ) = 0.320 M
number of moles NaOH:
n = M x V
n = 0.025 x 0.320 => 0.008 moles of NaOH
Mole ratio:
<span>2 NaOH + H2SO4 = Na2SO4 + 2 H2O
</span>
2 moles NaOH ---------------------- 1 mole H2SO4
0.008 moles moles NaOH ---------- ??
0.008 x 1 / 2 => 0.004 moles of H2SO4 :
Therefore:
M ( H2SO4) = n / V
M = 0.004 / 0.035
= 0.114 M
hope this helps!
Cohesion holds hydrogen bonds together to create surface tension on water. Since water is attracted to other molecules, adhesive forces pull the water toward other molecules.
1. Potential Energy is stored energy a object has when it's not moving.
2. Potential Energy is it's highest on the first stage because as you see the roller coaster is bout to go down the tract which is going to higher the kinetic energy and lower the potential energy.
3. Kinetic Energy is the amount of energy a object has when it's in motion or moving.
4. Kinetic Energy is it's highest in the third stage after it's gone down the tract and potential energy fully decreased and it's at zero.
Remember that potential energy is stored energy so when a object is not moving in this case the roller coaster isn't moving on the first stage when its bout to go down the roller coaster. Kinetic energy is the amount of energy a object has when it's in motion so in this case the third stage would have the highest example of Kinetic energy because it's fully in motion and has no potential energy.
The Correct answer to this question is translation