Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.
Answer:
V₂ = 3227.46 L
Explanation:
Given data:
Initial volume of gas = 1000 L
Initial temperature = 50°C (50 +273 = 323 K)
Initial pressure = 101.3 KPa
Final pressure = 27.5 KPa
Final temperature = 10°C (10 +273 = 283 K)
Final volume = ?
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 101.3 KPa × 1000 L × 283 K / 323 K × 27.5 KPa
V₂ = 28667900 KPa .L. K /
8882.5 K.KPa
V₂ = 3227.46 L
The answer is O2.
The ionic charge of something can be determined by it's place in the periodic table.
Coffe
Gasoline
Water
Coffe
Apple juice
A solution is any liquid
Answer:
<h3>The answer is 40.96%</h3>
Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
actual density = 2.49g/mL
error = 2.49 - 1.47 = 1.02
We have

We have the final answer as
<h3>40.96 %</h3>
Hope this helps you