1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
4 years ago
7

A proton with a velocity in the positive x-direction enters a region where there is a uniform magnetic field B in the positive y

-direction. You want to balance the magnetic force with an electric force so that the proton will continue along a straight line.
The electric field should be in the:

a)neg y direction

b)neg x direction

c)postive x direction

d)postive z direction

e)negative z
Physics
1 answer:
Genrish500 [490]4 years ago
8 0

Answer:

Positive z direction.

Explanation:

The magnetic force acting on the electron is given by the formula as :

F=q(v\times B)

q is the charge on proton

v is the speed of proton

B is the magnetic field

It is mentioned that the proton is moving with a velocity in the positive x-direction. The uniform magnetic field B in the positive y-direction such taht,

q = +e

v = vi

B = Bj

F=e(v\ i\times B\ j)

Since, i\times j=k

F=(evB)\ k

So, the magnetic force acting on the proton in positive z axis. Hence, the correct option is (d) "positive z direction".

You might be interested in
A doppler effect occurs when a source of sound moves. True or False
Shtirlitz [24]
<h2>Answer: True </h2>

The <u>Doppler effect</u> refers to the change in a wave perceived frequency when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.

In other words, it is the variation of the frequency of a wave due to the relative movement of the source of the wave with respect to its receiver.

It should be noted that this effect  bears its name in honor of the Austrian physicist <u>Christian Andreas Doppler</u>, who in 1842 proposed the existence of this effect for the case of light in the stars. Another important aspect is that the effect occurs in all waves (including light and sound). However, it is more noticeable to humans with sound waves.

4 0
3 years ago
A 4000 kg satellite is placed 2.60 x 10^6 m above the surface of the Earth.
mash [69]

a) The acceleration of gravity is 4.96 m/s^2

b) The critical velocity is 6668 m/s (24,006 km/h)

c) The period of the orbit is 8452 s

d) The satellite completes 10.2 orbits per day

e) The escape velocity of the satellite is 9430 m/s

f) The escape velocity of the rocket is 11,191 m/s

Explanation:

a)

The acceleration of gravity for an object near a planet is given by

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

h is the height above the surface

In this problem,

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

g=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)^2}=4.96 m/s^2

b)

The critical velocity for a satellite orbiting around a planet is given by

v=\sqrt{\frac{GM}{R+h}}

where we have again:

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

v=\sqrt{\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=6668 m/s

Converting into km/h,

v=6668 m/s \cdot \frac{3600 s/h}{1000 m/km}=24,006 km/h

c)

The period of the orbit is given by the circumference of the orbit divided by the velocity:

T=\frac{2\pi (R+h)}{v}

where

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

v = 6668 m/s

Substituting,

T=\frac{2\pi (6.37\cdot 10^6 + 2.60\cdot 10^6)}{6668}=8452 s

d)

One day consists of:

t = 24 \frac{hours}{day} \cdot 60 \frac{min}{hours} \cdot 60 \frac{s}{min}=86400 s

While the period of the orbit is

T = 8452 s

So, the number of orbits completed by the satellite in one day is

n=\frac{t}{T}=\frac{86400}{8452}=10.2

e)

The escape velocity for an object in the gravitational field of a planet is given by

v=\sqrt{\frac{2GM}{R+h}}

where here we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

Substituting, we find

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=9430 m/s

f)

We can apply again the formula to find the escape velocity for the rocket:

v=\sqrt{\frac{2GM}{R+h}}

Where this time we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=0, because the rocket is located at the Earth's surface, so its altitude is zero.

And substituting,

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6)}}=11,191 m/s

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

6 0
3 years ago
Mechanical energy is the sum of ________ energy and potential energy.apex
crimeas [40]
Mechanical energy is the sum of kinetic energy and potential energy
6 0
3 years ago
D<br> Question 14<br> 2 pts<br> The universe could be considered an isolated system because
Blizzard [7]

Answer:

it would help if we knew the question and other answers

Explanation:

5 0
3 years ago
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3.0 m is initially at rest. A 20 kg boy approaches the m
nekit [7.7K]

Answer:

The velocity of the merry-go-round after the boy hops on the merry-go-round is 1.5 m/s

Explanation:

The rotational inertia of the merry-go-round = 600 kg·m²

The radius of the merry-go-round = 3.0 m

The mass of the boy = 20 kg

The speed with which the boy approaches the merry-go-round = 5.0 m/s

F_T \cdot r = I \cdot \alpha  = m \cdot r^2  \cdot \alpha

Where;

F_T = The tangential force

I =  The rotational inertia

m = The mass

α = The angular acceleration

r = The radius of the merry-go-round

For the merry go round, we have;

I_m \cdot \alpha_m  = I_m \cdot \dfrac{v_m}{r \cdot t}

I_m = The rotational inertia of the merry-go-round

\alpha _m = The angular acceleration of the merry-go-round

v _m = The linear velocity of the merry-go-round

t = The time of motion

For the boy, we have;

I_b \cdot \alpha_b  = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Where;

I_b = The rotational inertia of the boy

\alpha _b = The angular acceleration of the boy

v _b = The linear velocity of the boy

t = The time of motion

When the boy jumps on the merry-go-round, we have;

I_m \cdot \dfrac{v_m}{r \cdot t} = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Which gives;

v_m = \dfrac{m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t} \cdot r \cdot t}{I_m} = \dfrac{m_b \cdot r^2  \cdot v_b}{I_m}

From which we have;

v_m =  \dfrac{20 \times 3^2  \times 5}{600} =  1.5

The velocity of the merry-go-round, v_m, after the boy hops on the merry-go-round = 1.5 m/s.

5 0
3 years ago
Other questions:
  • An experiment is conducted in which red light is diffracted through a single slit. part a listed below are alterations made, one
    8·2 answers
  • The wind blows because of____.
    9·2 answers
  • 29. What is the average velocity of an object that moves
    14·1 answer
  • A 1200-kg station wagon is moving along a straight highway at Another car, with mass 1800 kg and speed has its center of mass 40
    6·1 answer
  • How do you find speed of a ball at maximum height
    13·1 answer
  • On classical Hall mobility: In a semiconductor sample, the Hall probe region has a dimension of 0.5 cm by 0.25 cm by 0.05 cm thi
    13·1 answer
  • Which of the following is/are ALWAYS true concerning collision and transition state theory?
    9·1 answer
  • A. 1 and 2 &gt; 3 and 4 = 4 and 5
    13·1 answer
  • Between the ball and the player’s head, there are forces. Which of Newton’s laws does this represent? Support your choice.
    11·2 answers
  • After fertilization in the fallopian tube, how many days will the zygote travel before arriving at uterus?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!