Explanation:
When you observe the night sky you will notice that the stars are moving. They rise from eastern horizon and set in the western horizon. It happens due to rotation of Earth. When observed closely you will notice that the all the stars seem to go around the pole star. Out of all the stars there are some stars which neither set not rise, such stars are called as Circumpolar stars. This means that they are always above the horizon. If we trace the path of such stars they will appear to make complete circle around the pole star.
Also, you will notice that the altitude of pole star (separation of pole star from the horizon in degrees) will depend on the location of observe on the Earth. This happens due to Earth being spherical. So if you are on equator the pole star will be on the horizon i.e. 0° altitude. If you are at Poles, altitude of the pole star will be 90°. Technically the altitude of pole star at any place on Earth is equal to the latitude of the place.
If the altitude of pole star varies and increases as you move towards higher latitude on Earth, the distance between horizon and pole star will also increase. This will result in more stars being circumpolar.
If you are at Poles, all the stars will be circumpolar and if you are at equator no star will be circumpolar.
The energy stored in a capacitor is
E = (1/2) · (capacitance) · (voltage)²
E = (1/2) · (6 x 10⁻⁶ F) · (12 V)²
E = (3 x 10⁻⁶ F) · (144 V²)
<em>E = 4.32 x 10⁻⁴ Joule</em>
(That's 0.000432 of a Joule)
Q: ken, 0.75 kg, moves toward a wall (his path normal to the wall) at 52 m/s. 13.0 ms after he touches the wall he pushes himself off in the opposite direction at 60 m/s. What is the magnitude of the average force the wall exerts on Ken during this rapid maneuver
Answer:
-6461.54 N
Explanation:
From Newton's Fundamental equation,
F = m(v-u)/t.................... Equation 1
Where F = Force exerted in sonic, m = mass of ken, v = final velocity, u = initial velocity, t = time.
Given: m = 0.75 kg, v = - 60 m/s (opposite direction), u = 52 m/s, t = 13 ms = 0.013 s
Substitute into equation 1
F = 0.75(-60-52)/0.013
F = 0.75(-112)/0.013
F = -84/0.013
F = -6461.54 N
Note: The negative sign tells that the force act in opposite direction to the initial motion of ken.
Hence the magnitude of the average force of the wall = -6461.54 N
Answer:
The energy dissipated as the puck slides over the rough patch is 1.355 J
Explanation:
Given;
mass of the hockey puck, m = 0.159 kg
initial speed of the puck, u = 4.75 m/s
final speed of the puck, v = 2.35 m/s
The energy dissipated as the puck slides over the rough patch is given by;
ΔE = ¹/₂m(v² - u²)
ΔE = ¹/₂ x 0.159 (2.35² - 4.75²)
ΔE = -1.355 J
the lost energy is 1.355 J
Therefore, the energy dissipated as the puck slides over the rough patch is 1.355 J