Answer:
The overview of the given scenario is explained in explanation segment below.
Explanation:
- The inception of cavitation, that further sets the restriction for high-pressure and high-free operation, has always been the matter of substantial experimental study over the last few generations.
- Cavitation inception would be expected to vary on the segment where the local "PL" pressure mostly on segment keeps falling to that are below the "Pv" vapor pressure of the fluid and therefore could be anticipated from either the apportionment of the pressure.
⇒ A cavitation number is denoted by "σ" .
Answer:
A pitot tube is used to measure fluid flow in engineering
Answer:
5320.6 Pascal
Explanation:
Manometer is a pressure measuring device use to measure gas pressure .
Pressure difference in Manometer is a function of density,gravity and the height difference of the liquid.
Pressure difference = density x acceleration due to gravity x difference in height of liquid
Density of liquid = specific gravity of object x density of water.
Density of water = 997 kg/m^3
Specific gravity of liquid = 1.7
Density of liquid = 997 x 1.7 =1694.9kg/m^3
g= 9.81 m/s^2
h =320mm = 0.320m
Pressure difference = 1694.9 x 9.81 x 0.320 = 5320.6 Pascal
Loaded,
(s) =
=
is the loaded filter's transfer function.
A graded filter that, by virtue of its weight and permeability, stabilises the foot of an earth dam or other construction when it is installed at the base of that structure.
Air filters with depth loaded are made to achieve precisely that. They add particles gradually to create air passageways, reducing constriction. You may save time and money by using filters that last longer thanks to them. The bigger particles are caught at the filter's beginning, while the smaller particles are caught as it gets closer. This is intended to avoid rapid surface loading, hence facilitating more airflow. This enables longer-lasting filtration as well.
On the other hand, surface loading filters catch every particle that is on its surface. No matter how big or little the particles are, it doesn't care.
Learn more about Loaded here:
brainly.com/question/20039214
#SPJ4
Answer:
Attached below are the sketches
answer :
c) G(s) = 100 / ( s + 100 )
d) y'(t) + 100Y(s) = 100 X(s)
e) g(t) = e^-100t u(t)
Explanation:
a) Sketch the bode plot
The filter here is a low pass filter
b) Sketch the s-plane
attached below. pole ( s ) is at 100
c) write the transfer function of the filter
Transfer function ; G(s) = 100 / ( s + 100 )
d) write the differential equation
Y(s) / X(s) = 100 / s + 100
Y(s) [ s + 100 ] = 100 X(s)
= sY(s) + 100Y = 100 X(s)
∴ differential equation = y'(t) + 100Y(s) = 100 X(s)
e) write out the unforced transient response
g(t) = e^-100t u(t)
f) write out the frequency response
attached below