1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
3 years ago
6

A liquid's viscosity increases with increasing temperature. a)-True b)-False

Engineering
1 answer:
olasank [31]3 years ago
7 0

Answer:

b) False

Explanation:

Viscosity:

   Viscosity is a fluid property and comes in the picture when fluid in the motion.In Simple words viscosity is the frictional force offered by fluid between the fluid layer.Viscosity provides a resistant to flow of fluid.

Generally viscosity are of two types

1.Dynamics viscosity

2.Kinematics viscosity

Generally in liquids when temperature of fluid is increases then molecular force between fluid particle goes to decreases.Due to this viscosity of liquids will decrease.

So our option b is right.

You might be interested in
Hello , how are yall:))))
SVEN [57.7K]

Answer:

eh I'm good hbu?????????

6 0
3 years ago
Read 2 more answers
Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at (100%) (125
Anna [14]

Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.

Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:

Without any extra adjustments or corrections, either 125% of the continuous load, OR

When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).

This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.

To know more about connectors click here:

brainly.com/question/16987039

#SPJ4

4 0
1 year ago
A fatigue test was conducted in which the mean stress was 90 MPa (13050 psi), and the stress amplitude was 190 MPa (27560 psi).
Gwar [14]

Answer:

a) 280MPa

b) -100MPa

c) -0.35

d) 380 MPa

Explanation:

GIVEN DATA:

mean stress \sigma_m = 90MPa

stress amplitude \sigma_a = 190MPa

a) \sigma_m =\frac{\sigma_max+\sigma_min}{2}

    90 =\frac{\sigma_{max}+\sigma_{min}}{2} --------------1

\sigma_a =\frac{\sigma_{max}-\sigma_{min}}{2}

   190 = \frac{\sigma_{max}-\sigma_{min}}{2} -----------2

solving 1 and 2 equation we get

\sigma_{max} = 280MPa

b) \sigma_{min} = - 100MPa

c)

stress ratio=\frac{\sigma_{min}}{\sigma_{max}}

=\frac{-100}{280} = -0.35

d)magnitude of stress range

                      =(\sigma_{max} -\sigma_{min})

                       = 280 -(-100) = 380 MPa

3 0
3 years ago
Calculate the convective heat-transfer coefficient for water flowing in a round pipe with an inner diameter of 3.0 cm. The water
olasank [31]

Answer:

h = 10,349.06 W/m^2 K

Explanation:

Given data:

Inner diameter = 3.0 cm

flow rate  = 2 L/s

water temperature 30 degree celcius

Q = A\times V

2\times 10^{-3} m^3 = \frac{\pi}{4} \times (3\times 10^{-2})^2 \times velocity

V = \frac{20\times 4}{9\times \pi} = 2.83 m/s

Re = \frac{\rho\times V\times D}{\mu}

at 30 degree celcius = \mu = 0.798\times 10^{-3}Pa-s , K  = 0.6154

Re = \frac{10^3\times 2.83\times 3\times 10^{-2}}{0.798\times 10^{-3}}

Re = 106390

So ,this is turbulent flow

Nu = \frac{hL}{k} = 0.0029\times Re^{0.8}\times Pr^{0.3}

Pr= \frac{\mu Cp}{K} = \frac{0.798\times 10^{-3} \times 4180}{0.615} = 5.419

\frac{h\times 0.03}{0.615}  = 0.0029\times (1.061\times 10^5)^{0.8}\times 5.419^{0.3}

SOLVING FOR H

WE GET

h = 10,349.06 W/m^2 K

6 0
3 years ago
A man can swim at 4 ft/s in still water. He wishes to cross tje 40-ft wide river to point B, 30 ft downstream. If the river flow
iVinArrow [24]

Answer:

v \approx 4.472\,\frac{ft}{s}, t = 10\,s

Explanation:

Since man and river report constant speeds and velocities are mutually perpendicullar, the absolute speed of the man is calculated by the Pythagorean Theorem:

v = \sqrt{(4\,\frac{ft}{s} )^{2}+(2\,\frac{ft}{s} )^{2}}

v \approx 4.472\,\frac{ft}{s}

The required time to make the crossing is:

t = \frac{40\,ft}{4\,\frac{ft}{s} }

t = 10\,s

6 0
3 years ago
Other questions:
  • given the classes above, what output is produced by the following code? meg[] elements ={new Lois(), new Stewie(), new Meg(), ne
    15·1 answer
  • Check the answer that best describes the relationship between f(x) and x. (For example if f(x) is Θ(x) check that as your answer
    12·1 answer
  • In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetn
    11·1 answer
  • Determine the design angle ϕ (0∘≤ϕ≤90 ∘) between struts AB and AC so that the 400 lb horizontal force has a component of 600 lb
    10·1 answer
  • Which excerpt from "The Chrysanthemums' best reveals that Elisa is proud of her
    6·1 answer
  • Air enters a turbine with a stagnation pressure of 900 kPa and a stagnation temperature of 658K, and it is expanded to a stagnat
    9·1 answer
  • How is the air delivery temperature controlled during A/C operation?
    8·1 answer
  • What form of joining uses heat to create coalescence of the materials?
    7·1 answer
  • A solid steel shaft ABCDE turns freely in bearings at points A and E. The shaft is driven by the gear at C, which applies a torq
    14·1 answer
  • The section of the area to be examined is shown circumscribed by broken lines with circles at
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!