Can I get a picture? Of the question so I can understand it more?
Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;




Answer:
a) 70.29 %
b) 37%
Explanation:
percent reduction can be found from:
PR = 100*(π(do/2)^2-π(df/2)^2)/π(do/2)^2
= 100*(π(11.34/2)^2-π(6.21/2)^2)/π(11.34/2)^2
=70.29 %
percent elongation can be found from:
EL =L_f - Lo/Lo*100
= (73.17 -53.3/53.3)*100
= 37%
Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in
Answer: c) they have low genetic variability among them.
When a plant is grown for several generations of offspring of a plant, then there are some common things which are to be noted which are found similar in the offspring and in the parent of the offspring. The flowers and fruits and the time or season they come in are absolutely the same.