The equivalent of the resistance connected in the series will be Req=R₁+R₂+R₃.
<h3>
What is resistance?</h3>
Resistance is the obstruction offered whenever the current is flowing through the circuit.
So the equivalent resistance is when three resistances are connected in series. When the resistances are connected in series then the voltage is different and the current remain same in each resistance.
V eq = V₁ + V₂ + V₃
IReq = IR₁ + IR₂ + IR₃
Req = R₁ + R₂ + R₃
Therefore the equivalent of the resistance connected in the series will be Req=R₁+R₂+R₃.
To know more about resistance follow
brainly.com/question/24858512
#SPJ4
Answer:
The appropriate solution is "1481.76 N".
Explanation:
According to the question,
Mass,
m = 540 kg
Coefficient of static friction,
= 0.28
Now,
The applied force will be:
⇒ 
By substituting the values, we get

Answer:
fluid nozzle that is too large
Answer:
×

Explanation:
Please kindly find the attached document for the answer.
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s