This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
Answer:
x=0.154kg
Explanation:
(x*L)+(0.5kg*4200*50)+(x*4200*(-50)=0
(x*333 000J/kg*c)+(0.5kg*4200J/kg*C*(-40C))+(x*4200J/kg*C*50C)=0
When an ion is formed, the number of protons does not change. ... By removing an electron from this atom we get a positively charged Na+ ionthat has a net charge of +1. Atoms that gain extra electrons become negatively charged. A neutral chlorine atom, for example, contains 17 protons and 17 electrons.
Answer:
T1 = 131.4 [N]
T2 = 261 [N]
Explanation:
To solve this problem we must make a sketch of how will be the semicircle, for this reason we conducted an internet search, to find the scheme of the problem. This scheme is attached in the first image.
Then we make a free body diagram, with this free body diagram, we raise the forces that act on the body. Since it is a problem involving static equilibrium, the sum of forces in any direction and moments must be equal to zero.
By performing a sum of forces on the Y axis equal to zero we can find an equation that relates the forces of tension T1 & T2.
The second equation can be determined by summing moments equal to zero, around the point of application of the T1 force. In this way we find the T2 force.
The value of T2, is replaced in the first equation and we can find the value for T1.
Therefore
T1 = 131.4 [N]
T2 = 261 [N]
The free body diagram and the developed equations can be seen in the second attached image.
Answer:
-1486 KJ
Explanation:
The work done by an electric field on a charged body is:
W = ΔV * q
where ΔV = change in voltage
q = total charge
The total charge of Avogadro's number of electrons is:
6.0221409 * 10^(23) * -1.6023 * 10^(-19) = -9.65 * 10^(4)
The change in voltage, ΔV, is:
9.20 - (6.90) = 15.4
Therefore, the work done is:
W = -9.65 * 10^(4) * 15.4 = -1.486 * 10^6 J = -1486 KJ
The negative sign means that the motion of the electrons is opposite the electrostatic force.