Answer: Force applied by trampoline = 778.5 N
<em>Note: The question is incomplete.</em>
<em>The complete question is : What force does a trampoline have to apply to a 45.0 kg gymnast to accelerate her straight up at 7.50 m/s^2? note that the answer is independent of the velocity of the gymnast. She can be moving either up or down or be stationary.
</em>
Explanation:
The total required the trampoline by the trampoline = net force accelerating the gymnast upwards + force of gravity on her.
= (m * a) + (m * g)
= m ( a + g)
= 45 kg ( 7.50 * 9.80) m/s²
Force applied by trampoline = 778.5 N
Answer: Friction also prevents an object from starting to move, such as a shoe placed on a ramp. When friction acts between two surfaces that are moving over each other, some kinetic energy is transformed into heat energy. Friction can sometimes be useful.
Explanation:
The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.
The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.
1 == toroid
2= solenoid
metamorphic, sedimentary, igneous
We because it is really important that we recognize how we are feeling to make important decisions in life