Ether
methoxypropane (methyl propyl ether)
Answer:
Explanation:
C + O2 → CO2
Mole of C = 24 g/(12 g/mole)
Mole of C = 2 mole
Mole of molecular O2 = 74 g/(32 g/mole)
Mole of molecular O2 = 2.3125 mole
Since mole of C < mole of O2, then C being the limiting reagent.
From the reaction, it shows that mole ratio between C and O2 = 1 : 1.
So, 2 moles of C will stoichiometrically react with 2 moles of O2 to generate 2 moles of CO2.
Avogadro's law states that :"equal volumes of all gases, at the same temperature and pressure, have the same number of molecules i.e. 6.02 x 10^23 molecules/mole.
Therefore, 2 moles of CO2 contain 2 moles x 6.02 x 10^23 molecules/mole = 1.204 x 10^24 molecules of CO2 is formed.
The Change in Gibb's free energy, ΔG for the reaction at 298K is; -56.92KJ.
<h3>Gibb's free energy of reactions</h3>
It follows from the Gibb's free energy formula as expressed in terms of Enthalpy and Entropy that;
On this note, it follows that;
Hence, the Gibb's free energy for the reaction is;
- ΔG = 14.6 - 71.52
- ΔG = -56.92KJ
Remarks: The question requires that we determine the Gibb's free energy for the reaction at 298K.
Read more on Gibb's free energy;
brainly.com/question/13765848
Answer is: 0,275 moles of oxygen are consumed.
Chemical reaction: 2Mg + O₂ → 2MgO.
n(Mg) = 0,550 mol.
n(O₂) = ?
from chemical reaction: n(Mg) : n(O₂) = 2 : 1.
0,550 mol : n(O₂) = 2 : 1.
2n(O₂) = 0,550 mol.
n(O₂) = 0,275 mol.
n - amount of substance.