The molar mass of the gas : 18 x 10⁻³ kg/mol
<h3>Further explanation</h3>
Given
An unknown gas has one third the root mean square speed of H2 at 300 K
Required
the molar mass of the gas
Solution
Average velocities of gases can be expressed as root-mean-square (V rms)

T = temperature, Mm = molar mass of the gas particles , kg/mol
R = gas constant 8,314 J / mol K
v rms An unknown gas = 1/3 v rms H₂
v rms H₂ :

V rms of unknown gas =


Answer:
1.99 x 10²³ formula units
Explanation:
Given parameters:
Mass of AgF = 42.15g
Unknown:
The amount of formula units
Solution:
To solve this problem, we set out by find the number of moles in this compound from the given mass.
Number of moles = 
molar mass of AgF = 107.9 + 19 = 126.9g/mol
Number of moles =
= 0.33 moles
1 mole of a substance = 6.02 x 10²³ formula units
0.33 moles of AgF = 0.33 x 6.02 x 10²³ = 1.99 x 10²³ formula units
Answer:
Moles to Grams caco3
1 mole is equal to 1 moles CaCO3, or 100.0869 grams.
If ice is warmed and becomes a liquid, the process is endothermic.
The process requires heat in order to proceed. If ice stays in a very cold place, it will not melt unless it's heated. If ice is placed outside where it melts on its own, it gets the heat from the surroundings.
Water decomposes when electrolyzed to produce hydrogen and oxygen gas. If 2.5 grams of water were decomposed 1.04 grams of oxygen will be formed.
BCA table:
2
O ⇒
+ 
B 0.13 0 + 0
C -0.13 0.065 + 0.065
A 0 0.065
Explanation:
Balanced equation for water decomposition into hydrogen and oxygen gases
2
O ⇒
+ 
B 0.13 0 + 0
C -0.13 0.065 + 0.065
A 0 0.065
Number of moles of water = 
mass = 2.5 grams
atomic mass= 18 grams
number of moles can be known by putting the values in the formula,
n = 
= 0.13 moles
2 moles of water gives one mole of oxygen on decomposition
so, 0.13 moles of water will give x moles of oxygen on decompsition
= 
x = 0.065 moles of oxygen will be formed.
moles to gram will be calculated as
mass =number of moles x atomic mass
= 0.065 x 16
= 1.04 grams of oxygen.