The operating properly of a chemical plant would have to the same property of any chemicals but its in a plant form instead of test tubes it would have a stem and leaves and you could squeaz the plant and get it out of the plant
Answer: The molar volume of any gas at standard pressure and standard temperature is 22.4 liters per mole.
Explanation:The ideal gas law is PV=nRT
P is pressure and if we consider standard pressure, then we have 1.00 atm.
V is volume and that is what we are trying to solve.
n is the number of moles, which is 1.00 moles since we are trying to determine the volume of a gas in one mole.
R is the ideal gas constant which equals
0.0821 (Liters x atmospheres)/(mole x kelvin)
T is the standard temperature which is 273 kelvin.
Rearrange the equation to solve for volume.
V = nRT/P
V = (1.00 mol)(0.0821 L atm/mol K)(273 K)/ 1.00 atm
V = 22.4 L
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us remember that the first-order kinetics is given by:

Whereas the 27.5% complete means A/Ao=0.275, and thus, we solve for the rate constant as follows:

Then, we plug in the variables to obtain:

Regards!
<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years