<span>density = mass / volume
given the quotient , we have density and mass, volume can be easily calculated as:
volume = mass / p =15.5 g / 0.789 g/cm^3
=~ 20 cm^3 (dimension ally constant)</span>
First, find the number of moles for each element. The molar
mass for nitrogen is 14 g/mol and that of hydrogen is 1 g/mol.
1.40 g N / 14 g/mol = 0.1 mol N
0.20 g H / 1 g/mol = 0.2 mol H
Find the mole ratio. Divide both numbers with the much lower
value. In this case, it is 0.1 mol N.
For N: 0.1 ÷ 0.1 = 1
For H: 0.2÷0.1 = 2
Thus, the empirical formula is .
Answer: <span>Molecular geometry around each carbon atom in a saturated hydrocarbon is
Tetrahedral.
Explanation: </span> In saturated hydrocarbons (-CH₂-) the central atom (
carbon) is bonded to either three or two hydrogen atoms and one or two carbon atoms. So, the central atom is having four electron pairs and all pairs are bonding pairs and lacks any lone pair of electron. According to
Valence Shell Electron Pair Repulsion (VSEPR)
Theory the central atom with four bonding pair electrons and zero lone pair electrons will attain a
tetrahedral geometry with
bond angles of 109°.