A
nswer: -
C. Energy is released by the reaction
Explanation:-
An exothermic reaction is one in which during the progress of the reaction heat is evolved.
So energy is released by the reaction.
It cannot be created as energy is neither created nor destroyed as per the Law of conservation of energy. Energy is not transferred either.
The energy released during the progress of the reaction originates from the chemical bonds of the reactants as they break during their conversion into products.
Answer:
d= 14.007 amu
Explanation:
Abundance of N¹⁴ = 99.63%
Abundance of N¹⁵ = 0.37%
Atomic mass of N¹⁴ = 14.003 amu
Atomic mass of N¹⁵ = 15.000 amu
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (14.003 × 99.63)+(15.000× 0.37) /100
Average atomic mass = 1395.12 + 5.55 / 100
Average atomic mass = 1400.67/ 100
Average atomic mass = 14.007 amu.
4.06x20^24/6.02x10^23 = 6.744 moles x 55.845 g/mole = 376.61868grams
a) A combound which contains only Carbon and Hydrogen. There are covalent bonds between atoms. Hydrogen form one single bond and Carbon forms four covalent bonds. Carbon bonds can be single, double or triple bonds.
All hydrocarbons are organic compounds, but organic compound can include atoms of other elements.
b) Alkyne has a covalent triple bond between two carbon atoms. Simplest alkyne is ethyne HCCH.
b) Alkane contains only Carbon and Hydrogen and there are single bonds
between atoms. Simplest alkane is methane CH4.
c) An alkene has one double bond between Carbon atoms. Simplest
alkene is ethene H2C=CH2.
Answer:
- There will be 1.23 moles of helium in the balloon at STP
Explanation:
1) <u>Initial conditions of the helium gas</u>:
- V = 20.0 liter
- p = 1.50 atm
- T = 25.0 °C = 25.0 + 273.15 K = 298.15 K
2) <u>Ideal gas equation</u>:
- pV = n RT
- p, V, and T are given above
- R is the Universal constant = 0.0821 atm-liter / ( K - mol)
- n is the unknown number of moles
3) <u>Solve for n</u>:
- n = 1.50 atm × 20.0 liter / (0.0821 atm-liter /k -mol ×298.15K)
4) <u>At STP:</u>
- STP stands for standard pressure and temperature.
- The amount (number of moles) of the gas will not change because the change of pressure and temperature, so the number of moles reamain the same: 1.23 mol.