1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
2 years ago
7

A basketball player grabbing a rebound jumps 76.0 cm vertically. How much total time (ascent and descent) does the player spend.

..
(a) in the top 15.0 cm of this jump?
(b) in the bottom 15 cm? (The player seems to hang in the air at the top)
Answer both parts (a) and (b). Show all work and give explanation for calculations
Physics
1 answer:
MatroZZZ [7]2 years ago
8 0

Answer: Part(a)=0.041 secs, Part(b)=0.041 secs

Explanation: Firstly we assume that only the gravitational acceleration is acting on the basket ball player i.e. there is no air friction

now we know that

a=-9.81 m/s^2  ( negative because it is pulling the player downwards)

we also know that

s=76 cm= 0.76 m ( maximum s)

using kinetic equation

v^2=u^2+2as

where v is final velocity which is zero at max height and u is it initial

hence

u^2=-2(-9.81)*0.76

u=3.8615 m/s\\

now we can find time in the 15 cm ascent

s=ut+0.5at^2

0.15=3.861*t+0.5*9.81t^2\\

using quadratic formula

t=\frac{-3.861+\sqrt{3.86^2-4*0.5*9.81(-0.15)} }{2*0.5*9.81}

t=0.0409 sec

the answer for the part b will be the same

To find the answer for the part b we can find the velocity at 15 cm height similarly using

v^2=u^2+2as

where s=0.76-0.15

as the player has traveled the above distance to reach 15cm to the bottom

v^2=0^2 +2*(9.81)*(0.76-0.15)

v=3.4595

when the player reaches the bottom it has the same velocity with which it started which is 3.861

hence the time required to reach the bottom 15cm is

t=\frac{3.861-3.4595}{9.81}

t=0.0409

You might be interested in
An object is formed by attaching a uniform, thin rod with a mass of mr = 6.9 kg and length L = 4.88 m to a uniform sphere with m
Bumek [7]

Answer:

a)  total moment of inertia is 1359.05 kg m^2

b) angular acceleratio is 0.854rad/sec^2

Explanation:

Given data:

m1=6.9 kg

L=4.88 m

m2=34.5 kg

R=1.22 m

we klnow that moment of inertia for rod is given as

J1=(1/12) ×m×L^2

J1 = (1/12) \times 6.9 \times 4.88^2 = 13.693 kg m^2

moment of inertia for sphere is given as

J1=(2/5) ×m×r^2

J1 = (2/5) \times 34.5 \times 1.22^2 = 20.539 kg m^2

As object rotates around free end of rod then for sphere the axis around what it rotates is at a distance of d2=L+R

For rod distance is  d1=0.5*L

By Steiner theorem

for the rod we get J_1'=J_1 + m_1\times d_1^2

J_1' = 13.693 + 2.44^2\times 6.9 = 54.77 kg m^2

for the sphere we get J_2' = J_2 + m_2\times d_2^2

J2' = 20.539 + 34.5\times 6.1^2 = 1304.28 kg^m2

And the total moment of inertia for the first case is

J_{t1} = J_1'+J_2' = 54.77 + 1304.28 = 1359.05kg.m^2

b) F=476 N

The torque for system is given as

M = F\times d\times sin(a)

where a is angle between Force and distance d

and where d represent distance from rotating axis.

In this case a = 90 degree  

M = F\times L/2

M=476*2.44 = 1161.44 Nm

The acceleration is calculated as

a_1 = \frac{M}{J_{t1}}

      = \frac{1161.44}{1359.05}

      = 0.854 rad/sec^2

4 0
3 years ago
In the amusement park ride known as Magic Mountain Superman, powerful magnets accelerate a car and its riders from rest to 43.4
Anton [14]

Answer:

Average net force, F = 15157.15 N

Explanation:

It is given that,

The mass of the car and riders is, m=3\times 10^3\ kg

Initial speed of the car, u = 0

Final speed of the car, v = 43.4 m/s

Time, t = 8.59 seconds

We need to find the  average net force exerted on the car and riders by the magnets. It can be calculated using second law of motion as :

F = m a

F=m(\dfrac{v-u}{t})

F=3\times 10^3\ kg\times (\dfrac{43.4\ m/s-0}{8.59\ s})

F = 15157.15 N

So, the average net force exerted on the car and riders by the magnets. Hence, this is the required solution.

5 0
3 years ago
The primary purpose of a mirror is to _________ light rays.
Effectus [21]
a. reflect (I found this using prior knowledge and process of illumination it can't be absorb cuz you wouldn't see anything it can't be refract because it doesn't reverse the image and it isn't transmit )
8 0
3 years ago
The distance between adjacent nodes in a standing wave pattern is 25.0 cm. What is the
Novay_Z [31]

Answer:

Answer:

Speed of the wave in the string will be 3.2 m/sec

Explanation:

We have given frequency in the string fixed at both ends is 80 Hz

Distance between adjacent antipodes is 20 cm

We know that distance between two adjacent anti nodes is equal to half of the wavelength

So \frac{\lambda }{2}=20cm

2

λ

=20cm

\lambda =40cmλ=40cm

We have to find the speed of the wave in the string

Speed is equal to v=\lambda f=0.04\times 80=3.2m/secv=λf=0.04×80=3.2m/sec

So speed of the wave in the string will be 3.2 m/sec

4 0
2 years ago
Which item could you use in place of an ammeter to demonstrate that a
love history [14]

Answer:

the answer is D

Explanation:

6 0
2 years ago
Other questions:
  • Order the steps to describe how information is sent. A signal is produced. A signal is seen, heard, or used. Radio waves are mod
    10·1 answer
  • An athlete always runs before taking a jump . why?
    6·1 answer
  • Plz help
    12·1 answer
  • How do u convert 7.68 cal/sec to kcal/min
    13·2 answers
  • A ball thrown vertically upward is caught by the thrower after 2.00 s. Find (a) the initial velocity of the ball and (b) the max
    6·1 answer
  • As you stand near a railroad track, a train passes by at a speed of 31.7 m/s while sounding its horn at a frequency of 218 Hz. W
    10·1 answer
  • Say what main energy change
    10·1 answer
  • Savvas realize hot on the inside
    11·2 answers
  • What is the difference in graph shape when it is postion vs.time vs. velocity vs. time graph. Using a motion detector.
    6·1 answer
  • A firefighter is using a hose and the flow rate of the water leaving the hose is 0.032 m3/s. At the end of the hose, the nozzle
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!