Answer:
Learning the formula.multiply mass accelebrations.the force(F)required to move an object of mass(M) with an acceleration (a) is given by the formula F = m x a.so, force = mass multiplied by accelebration.
Answer:
Vx= 11.0865(m/s)
Vy= 6.4008(m/s)
Explanation:
Taking into account that 1m is equal to 0.3048 ft, the takeoff speed in m / s will be:
V= 42(ft/s) × 0.3048(m/ft) = 12.8016(m/s)
The take-off angle is equal to 30 °, taking into account the Pythagorean theorem the velocity on the X axis will be:
Vx= 12.8016 (m/s) × cos(30°)= 11.0865(m/s)
And for the same theorem the speed on the Y axis will be:
Vy= 12.8016 (m/s) × sen(30°)= 6.4008(m/s)
There are correlation and causation between the force of the finger and the movement of the books
Answer: The frequency heard will be f = 275.675Hz
Explanation: When an object emitting sound is moving, it occurs a phenomenon called Doppler shift or Doppler effect. What happens is that the sound gets higher when the moving object comes closer the observer and becomes lower after it passes, This change is due to the quantity of waves that passes through an area in an unit of time.
The formula to calculate the Doppler effect is as follows
f = (
) · f₀
f is the observed frequency;
c is the speed of sound;
Vs is velocity of the source;
f₀ is the emitted frequency of source;
Substituting and calculating,
f =
· 300
f = 275.675 Hz
Thus, the frequency heard by the police officer is 275.675Hz.
Answer:
Power output = 96.506 watts
Explanation:
Drag coefficient (Cd) = 0.9
V = 7.3 m/s
Air density (ρ) = 1.225 kg/m^(3)
Area (A) = 0.45 m^2
Let's find the drag force ;
Fd=(1/2)(Cd)(ρ)(A)(v^(2))
So Fd = (1/2)(0.9)(1.225)(0.45)(7.3^(2)) = 13.22N
Drag power = Drag Force x Drag velocity.
Thus drag power, = 13.22 x 7.3 = 96.506 watts