Given :
Number of operations move through a pocket calculator during a full day's operation ,
.
To Find :
How many coulombs of charge moved through it .
Solution :
We know , charge in one electron is :

So , charge on n electron is :

Therefore , -21.44 coulombs of charge is moved through it .
Hence , this is the required solution .
Answer:
You are asked to design a cylindrical steel rod 50.0 cm long, with a circular cross section, that will conduct 170.0 J/s from a furnace at 350.0 ∘C to a container of boiling water under 1 atmosphere.
Explanation:
Given Values:
L = 50 cm = 0.5 m
H = 170 j/s
To find the diameter of the rod, we have to find the area of the rod using the following formula.
Here Tc = 100.0° C
k = 50.2
H = k × A × ![\frac{[T_{H -}T_{C} ] }{L}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BT_%7BH%20-%7DT_%7BC%7D%20%5D%20%7D%7BL%7D)
Solving for A
A = ![\frac{H * L }{k * [ T_{H}- T_{C} ] }](https://tex.z-dn.net/?f=%5Cfrac%7BH%20%2A%20L%20%7D%7Bk%20%2A%20%5B%20T_%7BH%7D-%20T_%7BC%7D%20%5D%20%7D)
A = ![\frac{170 * 0.5}{50.2 * [ 350 - 100 ]}](https://tex.z-dn.net/?f=%5Cfrac%7B170%20%2A%200.5%7D%7B50.2%20%2A%20%5B%20350%20-%20100%20%5D%7D)
A =
= 6.77 ×
m²
Now Area of cylinder is :
A =
d²
solving for d:
d = 
d = 9.28 cm
The tension in the rope B is determined as 10.9 N.
<h3>Vertical angle of cable B</h3>
tanθ = (6 - 4)/(5 - 0)
tan θ = (2)/(5)
tan θ = 0.4
θ = arc tan(0.4) = 21.8 ⁰
<h3>Angle between B and C</h3>
θ = 21.8 ⁰ + 21.8 ⁰ = 43.6⁰
Apply cosine rule to determine the tension in rope B;
A² = B² + C² - 2BC(cos A)
B = C
A² = B² + B² - (2B²)(cos A)
A² = 2B² - 2B²(cos 43.6)
A² = 0.55B²
B² = A²/0.55
B² = 65.3/0.55
B² = 118.73
B = √(118.73)
B = 10.9 N
Thus, the tension in the rope B is determined as 10.9 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Appproximately 10% of those who suffer from anorexia nervosa literally starve themselves to death.