Answer:
Neglecting air resistance, the only force acting on a projectile is gravity.
This force causes the object to accelerate.
Explanation:
As a projectile moves upward, there is a downward force and a downward acceleration due to force of gravity. That is, as the object is moving upward, force of gravity acting on the projectile is causing a steady slowing down of the projectile.
Hence, Gravity is the downward force upon a projectile that influences its vertical motion and causes the parabolic trajectory that is characteristic of projectiles.
From Newton's law of motion, it suggest that force is required to cause an acceleration and not motion. Therefore, force of gravity causes the object to accelerate downwards.
The answer is:
Fill in the blanks to complete the sentence.
Light acts like a PARTICAL when it bounces off surfaces,
and acts like a WAVE when it bends around objects.
I hope this helps you :>
I think we will use the law of conservation of linear momentum;
M1V1 = M2V2
M1 = 4 kg (mass of the water balloon launcher)
V1=?
M2= 0.5 kg ( mass of the balloon)
V2 = 3 m/s
Therefore; 4 V1 = 0.5 × 3
4V1= 1.5
V1= 1.5/4
= 0.375 m/s
A direct-current (DC) generator is a rotating machine that supplies an electrical output with unidirectional voltage and current. ... The field is produced by direct current in field coils or by permanent magnets on the stator. The output, or armature, windings are placed in slots in the cylindrical iron rotor.
Given Information:
Power = P = 100 Watts
Voltage = V = 220 Volts
Required Information:
a) Current = I = ?
b) Resistance = R = ?
Answer:
a) Current = I = 0.4545 A
b) Resistance = R = 484 Ω
Explanation:
According to the Ohm’s law, the power dissipated in the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and P is the power dissipated in the light bulb.
Re-arranging the above equation for current I yields,

Therefore, 0.4545 A current is flowing through the light bulb.
According to the Ohm’s law, the voltage across the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and R is the resistance of the light bulb.
Re-arranging the above equation for resistance R yields,

Therefore, the resistance of the bulb is 484 Ω