Light from the stars, because the orbits make it difficult to see them.
Answer:
7.39 m or 3.61 m
Explanation:
= Wavelength
f = Frequency = 90 Hz
v = Speed of sound = 340 m/s
Path difference of the two waves is given by
Velocity of wave
So, the location from the worker is 7.39 m or 3.61 m
Answer:
(a) Vf = 128 ft/s
(b) K.E = 122.8 Btu
Explanation:
(a)
In order to find the velocity of the object just before striking the surface of earth or the final velocity, we use 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = 32.2 ft/s²
h = height = 253 ft
Vf = Final Velocity = ?
Vi = Initial Velocity = 10 ft/s
Therefore,
(2)(32.2 ft/s²)(253 ft) = Vf² - (10 ft/s)²
16293.2 ft²/s² + 100 ft²/s² = Vf²
Vf = √(16393.2 ft²/s²)
<u>Vf = 128 ft/s</u>
<u></u>
(b)
The kinetic energy of the object before it hits the surface of earth is given by:
K.E = (0.5)(m)(Vf)²
where,
m = mass of object = 375 lb
K.E = Kinetic energy of object before it strikes the surface of earth = ?
Therefore,
K.E = (0.5)(375 lb)(128 ft/s)²
K.E = 3073725 lb.ft²/s²
Now, converting this to Btu:
K.E = (3073725 lb.ft²/s²)(1 Btu/25037 lb.ft²/s²)
<u>K.E = 122.8 Btu</u>
The amount of solid does not affect how you are describing the solid so a is the answer
Answer:
Normal stress = 66/62.84 = 1.05kips/in²
shearing stress = T/2 = 0.952/2 = 0.476 kips/in²
Explanation:
A steel pipe of 12-in. outer diameter d₂ =12in d₁= 12 -4in = 8in
4 -in.-thick
angle of 25°
Axial force P = 66 kip axial force
determine the normal and shearing stresses
Normal stress б = force/area = P/A
= 66/ (П* (d₂²-d₁²)/4
=66/ (3.142* (12²-8²)/4
= 66/62.84 = 1.05kips/in²
Tangential stress T = force* cos ∅/area = P/A
= 66* cos 25/ (П* (d₂²-d₁²)/4
=59.82/ (3.142* (12²-8²)/4
= 59.82/62.84 = 0.952kips/in²
shearing stress = tangential stress /2
= T/2 = 0.952/2 = 0.476 kips/in²