It is the acceleration of an object in free fall
Explanation:
When an object is in free fall, it is subjected only to one force: the force of gravity, which pulls the object downward, with a magnitude (near the Earth's surface) which is given by

where
m is the mass of the object
 is the acceleration due to gravity
 is the acceleration due to gravity
We can apply Newton's second law to the object in free fall:

where
F is the net force on the object
a is the acceleration of the object
m is the mass
However, since there is only the force of gravity acting on the object, the net force is equal to the force of gravity: so we can equate the two equations, obtaining that

Which means that the acceleration of an object in free fall (acted upon the force of gravity only) is equal to the acceleration due to gravity,  .
.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
 
        
             
        
        
        
Answer:

Explanation:
given,
refractive index of lens, n = 1.70
Radius of curvature of front surface. R₁ = 20 cm
Radius of curvature of the back surface, R₂ = 30 cm
focal length= ?

     R₁ = +20 cm
     R₂ = -30 cm 
     n = 1.70




the focal length of the lens is equal to 17.15 cm
 
        
             
        
        
        
Here are the correct answers that would complete the given statement above. The vector quantity and the vector arrow are used to calculate magnitude and direction of a resultant vector. Vector quantity has both magnitude and direction, whereas vector arrow represents<span> the magnitude of a quantity and the direction represents the direction of that quantity. </span>Hope this is the answer that you are looking for.