Answer:
Explanation:
- The radio waves have a fixed relationship between the propagation speed (the speed of light in vacuum), the frequency and the wavelength, as follows:
- v = c = λ*f
where c= speed of light in vacuum = 3*10⁸ m/s, λ = wavelength =
4.92*10⁷ m.
Solving for f, we get the frequency of the radio waves:
f = 6.1 Hz
- Now, from the Hooke's law, we know that the mass attached at the end of the spring oscillates with an angular frequency defined by a fixed relationship between the spring constant k and the mass m, as follows:
- Now, we know that there exists a fixed relationship between the angular frequency and the frequency, as follows:
- We also know that f in (2) is the same that we got for the radio waves, so replacing (2) in (1), and rearranging terms, we can solve for k, as follows:
Answer:
B)
Explanation:
The electric force between charges can be determined by;
F =
Where: F is the force, k is the Coulomb's constant, is the value of the first charge, is the value of the second charge, r is the distance between the centers of the charges.
Let the original charge be represented by q, so that;
= 2q
=
So that,
F = x
= 2q x x
= x
= x
F = x
The electric force between the given charges would change by .
Answer:The answer is (60 mph - 0 mph) / 8s = (26.8224 m/s - 0 m/s) / 8s = 3.3528 m/s 2 (meters per second squared) average acceleration. That would be 27,000 miles per hour squared.
Explanation:
Answer:
f = q
Explanation:
In the attachment we can see a diagram of the parallel rays.
The dotted line represents the normal to the mirror surface
These rays when reflected using the constructor equation
where p and q are the distance to the object and the image respectively.
Since the rays are parallel P = inf
1 / f = 1 / inf + 1 / q
f = q
this means that all the rays focus on one focal point.